3D Part Segmentation On Intra
评估指标
DSC (A)
DSC (V)
IoU (A)
IoU (V)
评测结果
各个模型在此基准测试上的表现结果
模型名称 | DSC (A) | DSC (V) | IoU (A) | IoU (V) | Paper Title | Repository |
---|---|---|---|---|---|---|
SO-Net | 88.76 | 97.09 | 81.40 | 94.46 | SO-Net: Self-Organizing Network for Point Cloud Analysis | |
SpiderCNN | 75.82 | 94.53 | 67.25 | 90.16 | SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters | |
PointConv | 86.52 | 97.18 | 79.53 | 94.65 | PointConv: Deep Convolutional Networks on 3D Point Clouds | |
PointNet++ | 84.64 | 96.48 | 76.38 | 93.42 | PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space | |
PointNet | 49.59 | 85.00 | 37.75 | 75.23 | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation | |
PointCNN | 81.74 | 96.62 | 74.11 | 93.59 | PointCNN: Convolution On $mathcal{X}$-Transformed Points | |
3DMedPT | 89.71 | 97.29 | 82.39 | 94.82 | 3D Medical Point Transformer: Introducing Convolution to Attention Networks for Medical Point Cloud Analysis |
0 of 7 row(s) selected.