HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
监控视频异常事件检测
Anomaly Detection In Surveillance Videos On
Anomaly Detection In Surveillance Videos On
评估指标
Decidability
EER
ROC AUC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Decidability
EER
ROC AUC
Paper Title
Repository
STEAD-Base
-
-
91.34
STEAD: Spatio-Temporal Efficient Anomaly Detection for Time and Compute Sensitive Applications
STEAD-Fast
-
-
88.87
STEAD: Spatio-Temporal Efficient Anomaly Detection for Time and Compute Sensitive Applications
BN-WVAD
-
-
87.24
BatchNorm-based Weakly Supervised Video Anomaly Detection
MGFN
-
-
86.98
MGFN: Magnitude-Contrastive Glance-and-Focus Network for Weakly-Supervised Video Anomaly Detection
PEL
-
-
86.76
Learning Prompt-Enhanced Context Features for Weakly-Supervised Video Anomaly Detection
S3R
-
-
85.99
Self-supervised Sparse Representation for Video Anomaly Detection
-
WSAL
-
-
85.38
Localizing Anomalies from Weakly-Labeled Videos
CR-UNet
-
-
85.24
Contrastive-Regularized U-Net for Video Anomaly Detection
-
Multi-stream Network with Late Fuzzy Fusion
-
-
84.48
A multi-stream deep neural network with late fuzzy fusion for real-world anomaly detection
-
RTFM
-
-
84.03
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
MIST
-
-
82.30
MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection
DMRMs
-
-
81.91
Anomalous Event Recognition in Videos Based on Joint Learningof Motion and Appearance with Multiple Ranking Measures
-
Multiple-Instance-Based-Video-Anomaly-Detection-Using-Deep-Temporal-Encoding-Decoding
-
-
80.10
Multiple Instance-Based Video Anomaly Detection using Deep Temporal Encoding-Decoding
MULDE-frame-centric-micro-one-class-classification
-
-
78.5%
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
MILR
-
-
76.67
3D ResNet with Ranking Loss Function for Abnormal Activity Detection in Videos
-
GMM-based
0.885
0.302
75.90
Weakly and Partially Supervised Learning Frameworks for Anomaly Detection
-
Sultani et al.
0.613
0.353
75.41
Real-world Anomaly Detection in Surveillance Videos
0 of 17 row(s) selected.
Previous
Next
Anomaly Detection In Surveillance Videos On | SOTA | HyperAI超神经