HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
Atari 游戏
Atari Games On Atari 2600 Montezumas Revenge
Atari Games On Atari 2600 Montezumas Revenge
评估指标
Score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Score
Paper Title
Repository
Go-Explore
43791
First return, then explore
Go-Explore
43763
Go-Explore: a New Approach for Hard-Exploration Problems
SND-V
21565
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
Agent57
9352.01
Agent57: Outperforming the Atari Human Benchmark
RND
8152
Exploration by Random Network Distillation
SND-VIC
7838
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
SND-STD
7212
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
A2C+CoEX
6635
Contingency-Aware Exploration in Reinforcement Learning
-
DQN-PixelCNN
3705.5
Count-Based Exploration with Neural Density Models
DDQN-PC
3459
Unifying Count-Based Exploration and Intrinsic Motivation
GDI-I3
3000
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
GDI-I3
3000
Generalized Data Distribution Iteration
-
Sarsa-φ-EB
2745.4
Count-Based Exploration in Feature Space for Reinforcement Learning
Intrinsic Reward Agent
2504.6
Large-Scale Study of Curiosity-Driven Learning
GDI-H3
2500
Generalized Data Distribution Iteration
-
Ape-X
2500.0
Distributed Prioritized Experience Replay
MuZero (Res2 Adam)
2500
Online and Offline Reinforcement Learning by Planning with a Learned Model
R2D2
2061.3
Recurrent Experience Replay in Distributed Reinforcement Learning
-
DQN+SR
1778.8
Count-Based Exploration with the Successor Representation
DQNMMCe+SR
1778.6
Count-Based Exploration with the Successor Representation
0 of 50 row(s) selected.
Previous
Next