HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
Atari 游戏
Atari Games On Atari 2600 Private Eye
Atari Games On Atari 2600 Private Eye
评估指标
Score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Score
Paper Title
Repository
Go-Explore
95756
First return, then explore
Agent57
79716.46
Agent57: Outperforming the Atari Human Benchmark
SND-VIC
17313
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
MuZero
15299.98
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
GDI-I3
15100
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
GDI-H3
15100
Generalized Data Distribution Iteration
-
GDI-I3
15100
Generalized Data Distribution Iteration
-
C51 noop
15095.0
A Distributional Perspective on Reinforcement Learning
SND-STD
15089
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
CGP
12702.2
Evolving simple programs for playing Atari games
RND
8666
Exploration by Random Network Distillation
DQN-PixelCNN
8358.7
Count-Based Exploration with Neural Density Models
R2D2
5322.7
Recurrent Experience Replay in Distributed Reinforcement Learning
-
Advantage Learning
5276.16
Increasing the Action Gap: New Operators for Reinforcement Learning
SND-V
4213
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
Intrinsic Reward Agent
3036.5
Large-Scale Study of Curiosity-Driven Learning
Gorila
2598.6
Massively Parallel Methods for Deep Reinforcement Learning
DreamerV2
2198
Mastering Atari with Discrete World Models
Best Baseline
1947.3
The Arcade Learning Environment: An Evaluation Platform for General Agents
Bootstrapped DQN
1812.5
Deep Exploration via Bootstrapped DQN
0 of 52 row(s) selected.
Previous
Next
Atari Games On Atari 2600 Private Eye | SOTA | HyperAI超神经