HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
数据到文本生成
Data To Text Generation On E2E Nlg Challenge
Data To Text Generation On E2E Nlg Challenge
评估指标
BLEU
CIDEr
METEOR
NIST
ROUGE-L
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
BLEU
CIDEr
METEOR
NIST
ROUGE-L
Paper Title
Repository
S_1^R
68.60
2.37
45.25
8.73
70.82
Pragmatically Informative Text Generation
EDA_CS
67.05
2.2355
44.49
8.5150
68.94
Copy mechanism and tailored training for character-based data-to-text generation
TrICy (trK = 0)
66.43
-
-
-
70.14
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
-
Slug
66.19
-
44.54
8.6130
67.72
A Deep Ensemble Model with Slot Alignment for Sequence-to-Sequence Natural Language Generation
-
TGen
65.93
2.2338
44.83
8.6094
68.50
Findings of the E2E NLG Challenge
EDA_CS (TL)
65.80
2.1803
45.16
8.5615
67.40
Copy mechanism and tailored training for character-based data-to-text generation
Sys1-Primary
65.61
2.2183
45.17
8.5105
68.39
TNT-NLG, System 1: Using a statistical NLG to massively augment crowd-sourced data for neural generation
-
Zhang
65.45
2.1012
43.92
8.1804
70.83
Attention Regularized Sequence-to-Sequence Learning for E2E NLG Challenge
-
Self-memory
65.11
2.16
46.11
8.35
68.41
Self-training from Self-memory in Data-to-text Generation
Gong
64.22
2.2721
44.69
8.3453
66.45
Technical Report for E2E NLG Challenge
-
TUDA
56.57
1.8206
45.29
7.4544
66.14
E2E NLG Challenge: Neural Models vs. Templates
-
0 of 11 row(s) selected.
Previous
Next