HyperAI超神经

Dichotomous Image Segmentation On Dis Te2

评估指标

E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称E-measureHCEMAES-Measuremax F-Measureweighted F-measure
u-2-net-going-deeper-with-nested-u-structure0.8334900.0850.7880.7560.668
highly-accurate-dichotomous-image0.8583400.070.8230.7990.728
basnet-boundary-aware-salient-object0.8364800.0840.7860.7550.668
searching-for-mobilenetv30.8566000.0830.7770.7430.672
suppress-and-balance-a-simple-gated-network0.8045010.1020.7370.7020.598
bilateral-reference-for-high-resolution0.9352650.0350.9040.8980.863
pyramid-scene-parsing-network0.8285860.0920.7630.7240.636
rethinking-atrous-convolution-for-semantic0.8135160.1050.7290.6810.587
icnet-for-real-time-semantic-segmentation-on0.8265120.0950.7590.7160.627
global-context-aware-progressive-aggregation0.7865740.1090.7350.6730.570
revisiting-image-pyramid-structure-for-high-255-0.9050.894-
f3net-fusion-feedback-and-focus-for-salient0.8205420.0970.7550.7120.620
multi-view-aggregation-network-for0.9442510.0300.9150.9160.874
patch-depth-fusion-dichotomous-image0.947-0.0280.9240.9210.885
1908079190.8405550.0870.7840.7470.664
rethinking-bisenet-for-real-time-semantic0.8345560.0920.7590.7200.636
bisenet-bilateral-segmentation-network-for0.7816210.1110.7400.6800.564
concealed-object-detection0.8235930.0990.7530.7000.618
revisiting-image-pyramid-structure-for-high0.9253160.0380.8930.8810.834
hyperseg-patch-wise-hypernetwork-for-real0.8324510.0850.7940.7590.667
camouflaged-object-segmentation-with0.8295670.0960.7610.7200.633
u-net-convolutional-networks-for-biomedical-4740.1070.7550.7030.597