HyperAI超神经

Dichotomous Image Segmentation On Dis Te3

评估指标

E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称E-measureHCEMAES-Measuremax F-Measureweighted F-measure
1908079190.86910490.0800.8050.7840.700
f3net-fusion-feedback-and-focus-for-salient0.84810590.0920.7730.7430.656
pyramid-scene-parsing-network0.84311110.0920.7740.7470.657
suppress-and-balance-a-simple-gated-network0.8159720.1030.7470.7260.620
camouflaged-object-segmentation-with0.85410820.0920.7770.7510.664
bilateral-reference-for-high-resolution0.9525730.0300.9180.9230.891
bisenet-bilateral-segmentation-network-for0.80111460.1090.7570.7100.595
revisiting-image-pyramid-structure-for-high0.9385220.0340.9180.9190.871
highly-accurate-dichotomous-image0.8836870.0640.8360.8300.758
icnet-for-real-time-semantic-segmentation-on0.85210010.0910.7800.7520.664
concealed-object-detection0.84910960.0960.7660.7300.641
multi-view-aggregation-network-for0.9545250.0310.9200.9290.890
u-2-net-going-deeper-with-nested-u-structure0.8589650.0790.8090.7980.707
searching-for-mobilenetv30.88011360.0780.7640.7720.702
patch-depth-fusion-dichotomous-image0.957-0.0270.9280.9360.900
rethinking-atrous-convolution-for-semantic0.8339990.1020.7490.7170.623
u-net-convolutional-networks-for-biomedical-8830.098-0.7480.644
revisiting-image-pyramid-structure-for-high0.9385820.0380.9020.9040.856
global-context-aware-progressive-aggregation0.80110580.1090.7480.6990.590
hyperseg-patch-wise-hypernetwork-for-real0.8578870.0790.8110.7920.701
basnet-boundary-aware-salient-object0.8569480.0830.7980.7850.696
rethinking-bisenet-for-real-time-semantic0.85510810.0900.7710.7450.662