HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
域泛化
Domain Generalization On Office Home
Domain Generalization On Office Home
评估指标
Average Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Accuracy
Paper Title
Repository
MoA (OpenCLIP, ViT-B/16)
90.6
Domain Generalization Using Large Pretrained Models with Mixture-of-Adapters
PromptStyler (CLIP, ViT-L/14)
89.1
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
UniDG + CORAL + ConvNeXt-B
88.9
Towards Unified and Effective Domain Generalization
SIMPLE+
87.7
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
-
VL2V-SD (CLIP, ViT-B/16)
87.38
Leveraging Vision-Language Models for Improving Domain Generalization in Image Classification
CAR-FT (CLIP, ViT-B/16)
85.7
Context-Aware Robust Fine-Tuning
-
GMDG (RegNetY-16GF, SWAD)
84.7
Rethinking Multi-domain Generalization with A General Learning Objective
SIMPLE
84.6
SIMPLE: Specialized Model-Sample Matching for Domain Generalization
-
Ensemble of Averages (RegNetY-16GF)
83.9
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
PromptStyler (CLIP, ViT-B/16)
83.6
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
SPG (CLIP, ViT-B/16)
83.6
Soft Prompt Generation for Domain Generalization
MIRO (RegNetY-16GF, SWAD)
83.3
Domain Generalization by Mutual-Information Regularization with Pre-trained Models
D-Triplet(RegNetY-16GF)
82.6
Domain-aware Triplet loss in Domain Generalization
GMDG (RegNetY-16GF)
80.8
Rethinking Multi-domain Generalization with A General Learning Objective
SEDGE+
80.7
Domain Generalization using Pretrained Models without Fine-tuning
-
Ensemble of Averages (ResNeXt-50 32x4d)
80.2
Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization
CADG
79.9
CADG: A Model Based on Cross Attention for Domain Generalization
-
SEDGE
79.9
Domain Generalization using Pretrained Models without Fine-tuning
-
GMoE-S/16
74.2
Sparse Mixture-of-Experts are Domain Generalizable Learners
SPG (CLIP, ResNet-50)
73.8
Soft Prompt Generation for Domain Generalization
0 of 45 row(s) selected.
Previous
Next
Domain Generalization On Office Home | SOTA | HyperAI超神经