HyperAI超神经

Few Shot Semantic Segmentation On Coco 20I 5

评估指标

FB-IoU
Mean IoU

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称FB-IoUMean IoU
mianet-aggregating-unbiased-instance-and-173.8151.03
eliminating-feature-ambiguity-for-few-shot78.557.1
hmfs-hybrid-masking-for-few-shot-segmentation72.249.4
doubly-deformable-aggregation-of-covariance71.648.1
apanet-adaptive-prototypes-alignment-network-43
self-calibrated-cross-attention-network-for74.253.9
iterative-few-shot-semantic-segmentation-from-44.4
unleashing-the-potential-of-the-diffusion-60.7
visual-and-textual-prior-guided-mask-assemble76.757.1
dense-gaussian-processes-for-few-shot-56.2
few-shot-segmentation-without-meta-learning-a-41.6
prototype-as-query-for-few-shot-semantic73.353.4
feature-weighting-and-boosting-for-few-shot-23.65
fecanet-boosting-few-shot-semantic71.147.6
cost-aggregation-with-4d-convolutional-swin72.447.9
apanet-adaptive-prototypes-alignment-network-43.2
clustered-patch-element-connection-for-few-46.9
self-support-few-shot-semantic-segmentation-50.2
simpler-is-better-few-shot-semantic-41.3
masked-cross-image-encoding-for-few-shot-51.04
self-support-few-shot-semantic-segmentation-44.1
mianet-aggregating-unbiased-instance-and-173.1351.65
prototype-as-query-for-few-shot-semantic74.654.7
few-shot-semantic-segmentation-with-support66.248
interclass-prototype-relation-for-few-shot-51.1
feature-proxy-transformer-for-few-shot-58.9
doubly-deformable-aggregation-of-covariance72.949.2
dense-gaussian-processes-for-few-shot-57.9
msdnet-multi-scale-decoder-for-few-shot74.554.5
part-aware-prototype-network-for-few-shot-38.5
cost-aggregation-is-all-you-need-for-few-shot-47.9
hypercorrelation-squeeze-for-few-shot72.449.5
panet-few-shot-image-semantic-segmentation63.529.7
hypercorrelation-squeeze-for-few-shot70.746.9
mining-latent-classes-for-few-shot-41.4
hmfs-hybrid-masking-for-few-shot-segmentation72.248.4
apanet-adaptive-prototypes-alignment-network-46.4
hmfs-hybrid-masking-for-few-shot-segmentation73.350.6
visual-and-textual-prior-guided-mask-assemble79.461.8
bridge-the-points-graph-based-few-shot-66.8
hmfs-hybrid-masking-for-few-shot-segmentation71.848.3
singular-value-fine-tuning-few-shot-1-54.38
msanet-multi-similarity-and-attention-156.856.3
beyond-the-prototype-divide-and-conquer-46.48
dense-cross-query-and-support-attention71.748.3
hybrid-mamba-for-few-shot-segmentation77.658.9
hmfs-hybrid-masking-for-few-shot-segmentation72.950.6
msanet-multi-similarity-and-attention-153.6750.47
self-calibrated-cross-attention-network-for74.857
anti-aliasing-semantic-reconstruction-for-few-35.75
hybrid-mamba-for-few-shot-segmentation75.554.5
singular-value-fine-tuning-few-shot-1-53.87
eliminating-feature-ambiguity-for-few-shot74.352.8
clustered-patch-element-connection-for-few-46.7
msdnet-multi-scale-decoder-for-few-shot75.155.3
mining-latent-classes-for-few-shot-45.1
dense-cross-query-and-support-attention76.958.3
seggpt-segmenting-everything-in-context-67.9
self-guided-and-cross-guided-learning-for-few-39.9
learning-what-not-to-segment-a-new-51.16
hierarchical-dense-correlation-distillation-52.4
prior-guided-feature-enrichment-network-for61.937.4
quaternion-valued-correlation-learning-for-50
feature-weighting-and-boosting-for-few-shot-22.63
simpler-is-better-few-shot-semantic-42
prior-guided-feature-enrichment-network-for61.637.7
dense-cross-query-and-support-attention73.351.9
hierarchical-dense-correlation-distillation77.756
integrative-few-shot-learning-for-49.5
feature-proxy-transformer-for-few-shot-53.8
quaternion-valued-correlation-learning-for-51.9
matcher-segment-anything-with-one-shot-using-60.7
fecanet-boosting-few-shot-semantic67.741.5
singular-value-fine-tuning-few-shot-1-49.49
singular-value-fine-tuning-few-shot-1-49.07
intermediate-prototype-mining-transformer-for-47.5
adaptive-prototype-learning-and-allocation66.9642.48
few-shot-segmentation-via-cycle-consistent-45.6
intermediate-prototype-mining-transformer-for-47.9
prototype-mixture-models-for-few-shot-35.5
interclass-prototype-relation-for-few-shot-53.3