HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
图分类
Graph Classification On Mnist
Graph Classification On Mnist
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
ESA (Edge set attention, no positional encodings, tuned)
98.917±0.020
An end-to-end attention-based approach for learning on graphs
NeuralWalker
98.760 ± 0.079
Learning Long Range Dependencies on Graphs via Random Walks
ESA (Edge set attention, no positional encodings)
98.753±0.041
An end-to-end attention-based approach for learning on graphs
GatedGCN+
98.712 ± 0.137
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
CKGCN
98.423
CKGConv: General Graph Convolution with Continuous Kernels
Exphormer
98.414±0.038
Exphormer: Sparse Transformers for Graphs
GCN+
98.382 ± 0.095
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
EIGENFORMER
98.362
Graph Transformers without Positional Encodings
-
TIGT
98.230±0.133
Topology-Informed Graph Transformer
EGT
98.173
Global Self-Attention as a Replacement for Graph Convolution
GRIT
98.108
Graph Inductive Biases in Transformers without Message Passing
GPS
98.05
Recipe for a General, Powerful, Scalable Graph Transformer
GatedGCN
97.340
Benchmarking Graph Neural Networks
0 of 13 row(s) selected.
Previous
Next
Graph Classification On Mnist | SOTA | HyperAI超神经