HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Graph Classification
Graph Classification On Nci1
Graph Classification On Nci1
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
SAGPool_g
74.06%
Self-Attention Graph Pooling
GIUNet
80.2%
Graph isomorphism UNet
TokenGT
76.740±2.054
Pure Transformers are Powerful Graph Learners
SF + RFC
75.2%
A Simple Baseline Algorithm for Graph Classification
GIC
84.08%
Gaussian-Induced Convolution for Graphs
-
DDGK
68.1%
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
CIN++
85.3%
CIN++: Enhancing Topological Message Passing
SAGPool_h
67.45%
Self-Attention Graph Pooling
WL-OA
86.1%
On Valid Optimal Assignment Kernels and Applications to Graph Classification
-
FGW wl h=4 sp
86.42%
Optimal Transport for structured data with application on graphs
GFN
83.65%
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification
k-GNN
76.2%
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
WKPI-kmeans
87.2%
Learning metrics for persistence-based summaries and applications for graph classification
CAN
84.5%
Cell Attention Networks
ASAP
71.48
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations
Fea2Fea-s3
74.9%
Fea2Fea: Exploring Structural Feature Correlations via Graph Neural Networks
sGIN
83.85%
Mutual Information Maximization in Graph Neural Networks
graph2vec
73.22% ± 1.81%
graph2vec: Learning Distributed Representations of Graphs
WWL
85.75%
Wasserstein Weisfeiler-Lehman Graph Kernels
DAGCN
81.68%
DAGCN: Dual Attention Graph Convolutional Networks
0 of 67 row(s) selected.
Previous
Next