HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
图属性预测
Graph Property Prediction On Ogbg Molhiv
Graph Property Prediction On Ogbg Molhiv
评估指标
Test ROC-AUC
Validation ROC-AUC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Test ROC-AUC
Validation ROC-AUC
Paper Title
Repository
HyperFusion
0.8475 ± 0.0003
0.8275 ± 0.0008
-
-
PAS+FPs
0.8420 ± 0.0015
0.8238 ± 0.0028
-
-
HIG
0.8403 ± 0.0021
0.8176 ± 0.0034
-
-
DeepAUC
0.8352 ± 0.0054
0.8238 ± 0.0061
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification
FingerPrint+GMAN
0.8244 ± 0.0033
0.8329 ± 0.0039
-
-
Neural FingerPrints
0.8232 ± 0.0047
0.8331 ± 0.0054
Molecular Representation Learning by Leveraging Chemical Information
-
Graphormer + FPs
0.8225 ± 0.0001
0.8396 ± 0.0001
Do Transformers Really Perform Bad for Graph Representation?
Molecular FP + Random Forest
0.8208 ± 0.0037
0.8036 ± 0.0059
-
-
GPTrans-B
0.8126 ± 0.0032
-
Graph Propagation Transformer for Graph Representation Learning
CIN
0.8094 ± 0.0057
0.8277 ± 0.0099
Weisfeiler and Lehman Go Cellular: CW Networks
GSAT
0.8067 ± 0.0950
0.8347 ± 0.0031
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
EGT
0.806 ± 0.0065
-
Global Self-Attention as a Replacement for Graph Convolution
MorganFP+Rand. Forest
0.8060 ± 0.0010
0.8420 ± 0.0030
-
-
CIN-small
0.8055 ± 0.0104
0.8310 ± 0.0102
Weisfeiler and Lehman Go Cellular: CW Networks
Graphormer
0.8051 ± 0.0053
0.8310 ± 0.0089
Do Transformers Really Perform Bad for Graph Representation?
Graphormer (pre-trained on PCQM4M)
0.8051 ± 0.0053
0.8310 ± 0.0089
Do Transformers Really Perform Bad for Graph Representation?
GatedGCN+
0.8040 ± 0.0164
0.8329 ± 0.0158
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
directional GSN
0.8039 ± 0.0090
0.8473 ± 0.0096
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
P-WL
0.8039 ± 0.0040
0.8279 ± 0.0059
A Persistent Weisfeiler–Lehman Procedure for Graph Classification
-
Nested GIN+virtual node (ens)
0.7986 ± 0.0105
0.8080 ± 0.0278
Nested Graph Neural Networks
0 of 43 row(s) selected.
Previous
Next