HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
图像分类
Image Classification On Fashion Mnist
Image Classification On Fashion Mnist
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
pFedBreD_ns_mg
99.06
Personalized Federated Learning with Hidden Information on Personalized Prior
-
LR-Net
95.03
LR-Net: A Block-based Convolutional Neural Network for Low-Resolution Image Classification
Inception v3
94.44
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
R-ExplaiNet-26
93.45
Learning local discrete features in explainable-by-design convolutional neural networks
ResNet-18 + Vision Eagle Attention
93.30
Vision Eagle Attention: a new lens for advancing image classification
Tsetlin Machine Composites
93.0
TMComposites: Plug-and-Play Collaboration Between Specialized Tsetlin Machines
StiDi-BP in R-CSNN
92.8
Spike time displacement based error backpropagation in convolutional spiking neural networks
-
Star Algorithm on LeNet
92.3
Star algorithm for NN ensembling
ResNet-18
92.28
Vision Eagle Attention: a new lens for advancing image classification
SpeedyLiteVision Network
91.60
-
-
CTM-8000 (Convolutional Tsetlin Machine)
91.5
The Convolutional Tsetlin Machine
CNN+ Wilson-Cowan model RNN
91.35
Learning in Wilson-Cowan model for metapopulation
Convolutional PMM (Parametric Matrix Model)
90.89
Parametric Matrix Models
-
FastSNN (CNN)
90.57
Robust and accelerated single-spike spiking neural network training with applicability to challenging temporal tasks
FastSNN (MLP)
89.05
Robust and accelerated single-spike spiking neural network training with applicability to challenging temporal tasks
PMM (Parametric Matrix Model)
88.58
Parametric Matrix Models
-
Wilson-Cowan model RNN
88.39
Learning in Wilson-Cowan model for metapopulation
CTM-250 (Convolutional Tsetlin Machine)
88.25
The Convolutional Tsetlin Machine
GECCO
88.09
A Single Graph Convolution Is All You Need: Efficient Grayscale Image Classification
Sparse Spiking Gradient Descent (CNN)
86.7
Sparse Spiking Gradient Descent
0 of 34 row(s) selected.
Previous
Next
Image Classification On Fashion Mnist | SOTA | HyperAI超神经