HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Image Classification
Image Classification On Flowers 102
Image Classification On Flowers 102
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
Mixer-S/16- SAM
87.9
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
CeiT-S (384 finetune resolution)
98.6
Incorporating Convolution Designs into Visual Transformers
NAT-M1
-
Neural Architecture Transfer
CeiT-T
96.9
Incorporating Convolution Designs into Visual Transformers
ResNet-152-SAM
91.1
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
ResMLP12
97.4
ResMLP: Feedforward networks for image classification with data-efficient training
VIT-L/16 (Background)
99.75
Reduction of Class Activation Uncertainty with Background Information
NAT-M3
98.1%
Neural Architecture Transfer
NNCLR
95.1
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
Bamboo (ViT-B/16)
99.7
Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
ResMLP24
97.9
ResMLP: Feedforward networks for image classification with data-efficient training
CeiT-T (384 finetune resolution)
97.8
Incorporating Convolution Designs into Visual Transformers
ResNet-50x1-ACG (ImageNet-21K)
98.21
Effect of Pre-Training Scale on Intra- and Inter-Domain Full and Few-Shot Transfer Learning for Natural and Medical X-Ray Chest Images
CCT-14/7x2
99.76
Escaping the Big Data Paradigm with Compact Transformers
CaiT-M-36 U 224
99.1
Going deeper with Image Transformers
DAT
98.9%
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
SEER (RegNet10B)
96.3
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
ResNet-152x4-AGC (ImageNet-21K)
99.49
Effect of Pre-Training Scale on Intra- and Inter-Domain Full and Few-Shot Transfer Learning for Natural and Medical X-Ray Chest Images
CeiT-S
98.2
Incorporating Convolution Designs into Visual Transformers
TransBoost-ResNet50
97.85%
TransBoost: Improving the Best ImageNet Performance using Deep Transduction
0 of 51 row(s) selected.
Previous
Next