HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Image Classification
Image Classification On Imagenet
Image Classification On Imagenet
评估指标
Hardware Burden
Number of params
Operations per network pass
Top 1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Hardware Burden
Number of params
Operations per network pass
Top 1 Accuracy
Paper Title
Repository
Xception
87G
22.855952M
0.838G
79%
Xception: Deep Learning with Depthwise Separable Convolutions
ResNet-101
-
40M
-
78.25%
Deep Residual Learning for Image Recognition
CvT-13 (384 res)
-
20M
-
83%
CvT: Introducing Convolutions to Vision Transformers
DenseNet-201
-
-
-
77.42%
Densely Connected Convolutional Networks
ConViT-Ti+
-
10M
-
76.7%
ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases
ViT-B/16-SAM
-
87M
-
79.9%
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
PVTv2-B2
-
25.4M
-
82%
PVT v2: Improved Baselines with Pyramid Vision Transformer
ConvFormer-S36 (224 res, 21K)
-
40M
-
85.4%
MetaFormer Baselines for Vision
MambaVision-L2
-
241.5M
-
85.3%
MambaVision: A Hybrid Mamba-Transformer Vision Backbone
FBNetV5-AC-CLS
-
-
-
78.4%
FBNetV5: Neural Architecture Search for Multiple Tasks in One Run
-
HCGNet-B
-
12.9M
-
78.5%
Gated Convolutional Networks with Hybrid Connectivity for Image Classification
ConViT-S+
-
48M
-
82.2%
ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases
ResMLP-B24 + STD
-
122.6M
-
82.4%
Spatial-Channel Token Distillation for Vision MLPs
DeiT-S with iRPE-K
-
22M
-
80.9%
Rethinking and Improving Relative Position Encoding for Vision Transformer
BoTNet T6
-
53.9M
-
84%
Bottleneck Transformers for Visual Recognition
ViT-B @224 (DeiT-III + AugSub)
-
86.6M
-
84.2%
Masking Augmentation for Supervised Learning
MaxViT-B (224res)
-
120M
-
84.94%
MaxViT: Multi-Axis Vision Transformer
BiFormer-S* (IN1k ptretrain)
-
-
-
84.3%
BiFormer: Vision Transformer with Bi-Level Routing Attention
CeiT-T
-
6.4M
-
76.4%
Incorporating Convolution Designs into Visual Transformers
ResNet-101 (AutoMix)
-
44.6M
-
80.98%
AutoMix: Unveiling the Power of Mixup for Stronger Classifiers
0 of 1058 row(s) selected.
Previous
Next