HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
图像分类
Image Classification On Mnist
Image Classification On Mnist
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
Repository
ProjectionNet
5.0
ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
-
Zhao et al. (2015) (auto-encoder)
4.76
Stacked What-Where Auto-encoders
DNN-2 (Trainable Activations)
3.6
Trainable Activations for Image Classification
-
DNN-3 (Trainable Activations)
3.0
Trainable Activations for Image Classification
-
DNN-5 (Trainable Activations)
2.8
Trainable Activations for Image Classification
-
PMM (Parametric Matrix Model)
2.62
Parametric Matrix Models
-
GECCO
1.96
A Single Graph Convolution Is All You Need: Efficient Grayscale Image Classification
Tsetlin Machine
1.8
The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic
Perceptron with a tensor train layer
1.8
Tensorizing Neural Networks
ANODE
1.8
Augmented Neural ODEs
MLP (ideal number of groups)
1.67
On the Ideal Number of Groups for Isometric Gradient Propagation
-
Weighted Tsetlin Machine
1.5
The Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses
CNN Model by Som
1.41
Convolutional Sequence to Sequence Learning
Convolutional Clustering
1.4
Convolutional Clustering for Unsupervised Learning
-
LeNet 300-100 (Sparse Momentum)
1.26
Sparse Networks from Scratch: Faster Training without Losing Performance
Convolutional PMM (Parametric Matrix Model)
1.01
Parametric Matrix Models
-
BinaryConnect
1.0
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
-
Explaining and Harnessing Adversarial Examples
0.8
Explaining and Harnessing Adversarial Examples
Sparse Activity and Sparse Connectivity in Supervised Learning
0.8
Sparse Activity and Sparse Connectivity in Supervised Learning
-
Deep Fried Convnets
0.7
Deep Fried Convnets
0 of 80 row(s) selected.
Previous
Next