HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
图像聚类
Image Clustering On Cifar 10
Image Clustering On Cifar 10
评估指标
ARI
Accuracy
Backbone
NMI
Train set
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
ARI
Accuracy
Backbone
NMI
Train set
Paper Title
Repository
TURTLE (CLIP + DINOv2)
0.989
0.995
-
0.985
-
Let Go of Your Labels with Unsupervised Transfer
PRCut (CLIP)
-
0.975
-
0.934
-
Deep Clustering via Probabilistic Ratio-Cut Optimization
-
PRO-DSC
-
0.972
-
0.928
-
Exploring a Principled Framework For Deep Subspace Clustering
-
TEMI CLIP ViT-L (openai)
0.932
0.969
ViT-L
0.926
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
TEMI DINO ViT-B
0.885
0.94.5
ViT-B
0.886
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
DPAC
0.866
0.934
ResNet-34
0.87
-
Deep Online Probability Aggregation Clustering
SPICE-BPA
0.866
0.933
ResNet-18
0.870
-
The Balanced-Pairwise-Affinities Feature Transform
SeCu
0.857
0.93
ResNet-18
0.861
Train
Stable Cluster Discrimination for Deep Clustering
TAC
0.831
0.919
-
0.833
-
Image Clustering with External Guidance
SPICE*
0.836
0.918
ResNet-18
0.850
Train
SPICE: Semantic Pseudo-labeling for Image Clustering
DCN+BRB
0.824
0.912
ResNet-18
0.837
Train
Breaking the Reclustering Barrier in Centroid-based Deep Clustering
IDEC+BRB
0.818
0.907
ResNet-18
0.833
Train
Breaking the Reclustering Barrier in Centroid-based Deep Clustering
DEC+BRB
0.812
0.906
ResNet-18
0.826
Train
Breaking the Reclustering Barrier in Centroid-based Deep Clustering
RUC
-
0.903
ResNet-18
-
-
Improving Unsupervised Image Clustering With Robust Learning
IMC-SwAV (Best)
0.8
0.897
ResNet-18
0.818
Train
Information Maximization Clustering via Multi-View Self-Labelling
IMC-SwAV (Avg+-)
0.79
0.891
ResNet-18
0.811
Train
Information Maximization Clustering via Multi-View Self-Labelling
TCL
0.780
0.887
ResNet-34
0.819
Train
Twin Contrastive Learning for Online Clustering
HUME
0.776
0.884
ResNet-18
-
Train
-
-
SCAN
0.772
0.883
ResNet-18
0.797
Train
SCAN: Learning to Classify Images without Labels
SCAN (Avg)
0.758
0.876
ResNet-18
0.787
Train
SCAN: Learning to Classify Images without Labels
0 of 40 row(s) selected.
Previous
Next