HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Image Generation
Image Generation On Celeba 256X256
Image Generation On Celeba 256X256
评估指标
bpd
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
bpd
Paper Title
Repository
SPN Menick and Kalchbrenner (2019)
0.61
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
LSGM
0.70
Score-based Generative Modeling in Latent Space
StyleSwin
-
StyleSwin: Transformer-based GAN for High-resolution Image Generation
NCP-VAE
-
A Contrastive Learning Approach for Training Variational Autoencoder Priors
-
MaCow (Unf)
0.95
MaCow: Masked Convolutional Generative Flow
Efficient-VDVAE
0.51
Efficient-VDVAE: Less is more
HiT-B
-
Improved Transformer for High-Resolution GANs
StyleALAE
-
Adversarial Latent Autoencoders
Glow (Kingma and Dhariwal, 2018)
1.03
Glow: Generative Flow with Invertible 1x1 Convolutions
Residual Flow
0.992
Residual Flows for Invertible Generative Modeling
Locally Masked PixelCNN
0.74
Locally Masked Convolution for Autoregressive Models
GLF+perceptual loss (ours)
-
Generative Latent Flow
MSP
-
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
VQGAN
-
Taming Transformers for High-Resolution Image Synthesis
ANF Huang et al. (2020)
0.72
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
NVAE w/ flow
0.70
NVAE: A Deep Hierarchical Variational Autoencoder
MaCow (Var)
0.67
MaCow: Masked Convolutional Generative Flow
0 of 17 row(s) selected.
Previous
Next