Image Generation On Imagenet 32X32
评估指标
bpd
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | bpd |
---|---|
nvae-a-deep-hierarchical-variational | 3.92 |
glow-generative-flow-with-invertible-1x1 | 4.09 |
mintnet-building-invertible-neural-networks | 4.06 |
residual-flows-for-invertible-generative | 4.01 |
variational-diffusion-models | 3.72 |
generating-high-fidelity-images-with-subscale | 3.85 |
stylegan-xl-scaling-stylegan-to-large-diverse | - |
preventing-posterior-collapse-with-delta-vaes | 3.77 |
pagoda-progressive-growing-of-a-one-step | - |
very-deep-vaes-generalize-autoregressive-1 | 3.8 |
pixel-recurrent-neural-networks | 3.86 |
hierarchical-transformers-are-more-efficient | 3.74 |
score-matching-model-for-unbounded-data-score-1 | 3.85 |
improved-techniques-for-maximum-likelihood | 3.43 |
multi-resolution-continuous-normalizing-flows | 3.77 |
flow-improving-flow-based-generative-models | 3.86 |
biva-a-very-deep-hierarchy-of-latent | 3.96 |
reflected-diffusion-models | 3.74 |
neural-diffusion-models | 3.55 |
denoising-diffusion-probabilistic-models | 3.89 |
self-supervised-gan-analysis-and-improvement-1 | - |
on-maximum-likelihood-training-of-score-based | 3.76 |
input-perturbation-reduces-exposure-bias-in | - |
generative-modeling-with-bayesian-sample | 3.44 |
image-transformer | 3.77 |
flow-matching-for-generative-modeling | 3.53 |
quasi-conservative-score-based-generative | - |
augmented-normalizing-flows-bridging-the-gap | 3.92 |
conditional-image-generation-with-pixelcnn | 3.83 |
the-gan-is-dead-long-live-the-gan-a-modern | - |
densely-connected-normalizing-flows | 3.63 |
density-estimation-using-real-nvp | 4.28 |
neural-flow-diffusion-models-learnable | 3.34 |