HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Image Generation
Image Generation On Imagenet 32X32
Image Generation On Imagenet 32X32
评估指标
bpd
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
bpd
Paper Title
Repository
NVAE w/ flow
3.92
NVAE: A Deep Hierarchical Variational Autoencoder
Glow (Kingma and Dhariwal, 2018)
4.09
Glow: Generative Flow with Invertible 1x1 Convolutions
MintNet
4.06
MintNet: Building Invertible Neural Networks with Masked Convolutions
Residual Flow
4.01
Residual Flows for Invertible Generative Modeling
VDM
3.72
Variational Diffusion Models
SPN Menick and Kalchbrenner (2019)
3.85
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
StyleGAN-XL
-
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
δ-VAE
3.77
Preventing Posterior Collapse with delta-VAEs
-
PaGoDA
-
PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher
Very Deep VAE
3.8
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
PixelRNN
3.86
Pixel Recurrent Neural Networks
Hourglass
3.74
Hierarchical Transformers Are More Efficient Language Models
DDPM++ (VP, NLL) + ST
3.85
Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation
i-DODE
3.43
Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs
MRCNF
3.77
Multi-Resolution Continuous Normalizing Flows
Flow++
3.86
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
BIVA Maaloe et al. (2019)
3.96
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Reflected Diffusion
3.74
Reflected Diffusion Models
NDM
3.55
Neural Diffusion Models
-
DDPM
3.89
Denoising Diffusion Probabilistic Models
0 of 33 row(s) selected.
Previous
Next