HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Image Super Resolution
Image Super Resolution On Set5 3X Upscaling
Image Super Resolution On Set5 3X Upscaling
评估指标
PSNR
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PSNR
Paper Title
Repository
IMDN
34.36
Lightweight Image Super-Resolution with Information Multi-distillation Network
SRFBN
34.70
Feedback Network for Image Super-Resolution
HMA†
35.35
HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution
DRCT
35.18
DRCT: Saving Image Super-resolution away from Information Bottleneck
LFFN-S
34.04
Lightweight Feature Fusion Network for Single Image Super-Resolution
LCSCNet
33.99
LCSCNet: Linear Compressing Based Skip-Connecting Network for Image Super-Resolution
Deep CNN Denoiser
31.26
Learning Deep CNN Denoiser Prior for Image Restoration
CSNLN
34.74
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
Hi-IR-L
35.2
Hierarchical Information Flow for Generalized Efficient Image Restoration
-
ML-CrAIST
34.7
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
AdaFM-Net
34.34
Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers
FACD
34.729
Feature-domain Adaptive Contrastive Distillation for Efficient Single Image Super-Resolution
-
HAT_FIR
35.21
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
DRCT-L
35.32
DRCT: Saving Image Super-resolution away from Information Bottleneck
DnCNN-3
33.75
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
SwinFIR
35.15
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
PMRN+
34.65
Sequential Hierarchical Learning with Distribution Transformation for Image Super-Resolution
-
HAT
35.16
Activating More Pixels in Image Super-Resolution Transformer
RED30
33.82
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections
MWCNN
34.17
Multi-level Wavelet-CNN for Image Restoration
0 of 32 row(s) selected.
Previous
Next