HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
车道检测
Lane Detection On Curvelanes
Lane Detection On Curvelanes
评估指标
F1 score
GFLOPs
Precision
Recall
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
F1 score
GFLOPs
Precision
Recall
Paper Title
Repository
CondLSTR (ResNet-101)
88.47
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
-
CondLSTR (ResNet-34)
88.23
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
-
CondLSTR (ResNet-18)
87.99
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
-
CANet-L
87.87
-
91.69
-
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CANet-M
87.19
22.6
91.53
83.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CANet-S
86.57
13.1
91.37
82.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CLRerNet-DLA34
86.47
18.4
91.66
81.83
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
CondLaneNet-L(ResNet-101)
86.10
44.9
88.98
83.41
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CLRNet-DLA34
86.1
18.4
91.4
81.39
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
CondLaneNet-M(ResNet-34)
85.92
19.7
88.29
83.68
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CondLaneNet-S(ResNet-18)
85.09
10.3
87.75
82.58
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CurveLane-L
82.29
20.7
91.11
75.03
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CurveLane-M
81.8
11.6
93.49
72.71
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CurveLane-S
81.12
7.4
93.58
71.59
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
PointLaneNet
78.47
14.8
86.33
72.91
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
SCNN
65.02
328.4
76.13
56.74
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
Enet-SAD
50.31
3.9
63.6
41.6
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CANet-L(ResNet101)
-
45.7
-
84.36
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
0 of 18 row(s) selected.
Previous
Next
Lane Detection On Curvelanes | SOTA | HyperAI超神经