HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
语言建模
Language Modelling On Enwiki8
Language Modelling On Enwiki8
评估指标
Bit per Character (BPC)
Number of params
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Bit per Character (BPC)
Number of params
Paper Title
Repository
LSTM (7 layers)
1.67
-
Generating Sequences With Recurrent Neural Networks
Hypernetworks
1.34
27M
HyperNetworks
SHA-LSTM (4 layers, h=1024, no attention head)
1.33
51M
Single Headed Attention RNN: Stop Thinking With Your Head
LN HM-LSTM
1.32
35M
Hierarchical Multiscale Recurrent Neural Networks
ByteNet
1.31
-
Neural Machine Translation in Linear Time
Recurrent Highway Networks
1.27
46M
Recurrent Highway Networks
Large FS-LSTM-4
1.25
47M
Fast-Slow Recurrent Neural Networks
Large mLSTM
1.24
46M
Multiplicative LSTM for sequence modelling
AWD-LSTM (3 layers)
1.232
47M
An Analysis of Neural Language Modeling at Multiple Scales
Cluster-Former (#C=512)
1.22
-
Cluster-Former: Clustering-based Sparse Transformer for Long-Range Dependency Encoding
-
LSTM
1.195
48M
Mogrifier LSTM
Mogrifier LSTM
1.146
48M
Mogrifier LSTM
64-layer Character Transformer Model
1.11
44M
Character-Level Language Modeling with Deeper Self-Attention
SHA-RNN (4 layers, h=1024, single attention head)
1.076
52M
Single Headed Attention RNN: Stop Thinking With Your Head
SHA-RNN (4 layers, h=1024, attention head per layer)
1.068
54M
Single Headed Attention RNN: Stop Thinking With Your Head
Transformer-XL (12 layers)
1.06
41M
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Transformer (64 layers)
1.06
235M
Character-Level Language Modeling with Deeper Self-Attention
Skip Cross-Head Transformer-XL
1.033
41M
Memory-efficient Stochastic methods for Memory-based Transformers
Transformer-XL (18 layers)
1.03
88M
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Transformer+SSA
1.024
-
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
0 of 42 row(s) selected.
Previous
Next
Language Modelling On Enwiki8 | SOTA | HyperAI超神经