HyperAI超神经

Link Property Prediction On Ogbl Ddi

评估指标

Ext. data
Number of params
Test Hits@20
Validation Hits@20

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Ext. dataNumber of paramsTest Hits@20Validation Hits@20
ensemble-learning-for-graph-neural-networksNo105123910.9777 ± 0.00370.8965 ± 0.0021
reconsidering-the-performance-of-gae-in-linkNo138168330.9443 ± 0.00570.7979 ± 0.0159
node2vec-scalable-feature-learning-forNo6452490.2326 ± 0.02090.3292 ± 0.0121
network-in-graph-neural-networkNo16184330.5770 ± 0.15230.7323 ± 0.0040
模型 5No37616650.8781 ± 0.04740.8044 ± 0.0404
模型 6No27129310.7654 ± 0.04590.6927 ± 0.0054
revisiting-graph-neural-networks-for-link-1No5311380.3056 ± 0.03860.2849 ± 0.0269
semi-supervised-classification-with-graphNo14215710.6056 ± 0.08690.6776 ± 0.0095
gidn-a-lightweight-graph-inception-diffusionNo35066910.9542 ± 0.00000.8258 ± 0.0000
network-in-graph-neural-networkNo14873610.5483 ± 0.15810.7121 ± 0.0038
模型 11No9760220230.9972 ± 0.00040.9956 ± 0.0001
inductive-representation-learning-on-largeNo14210570.5390 ± 0.04740.6262 ± 0.0037
neural-common-neighbor-with-completion-forNo14120980.8232 ± 0.06100.7172 ± 0.0025
semi-supervised-classification-with-graphNo12899850.3707 ± 0.05070.5550 ± 0.0208
memory-associated-differential-learningNo12288970.6781 ± 0.02940.7010 ± 0.0082
模型 16No00.1773 ± 0.00000.0947 ± 0.0000
can-gnns-learn-link-heuristics-a-conciseNo51252500.9549 ± 0.00730.9098 ± 0.0294
deepwalk-online-learning-of-socialNo15439130.2246 ± 0.0290Please tell us
distance-enhanced-graph-neural-network-forNo37601340.8239 ± 0.04370.8206 ± 0.0298
模型 20No37616650.9037 ± 0.01930.8599 ± 0.0286
模型 21No00.1861 ± 0.00000.0966 ± 0.0000
adaptive-graph-diffusion-networks-with-hopNo35066910.9538 ± 0.00940.8943 ± 0.0281
counterfactual-graph-learning-for-linkNo8376350.8608 ± 0.01980.8405 ± 0.0284
模型 24No29108170.7704 ± 0.05820.6928 ± 0.0096
from-graph-low-rank-global-attention-to-2-fwlNo15760810.6230 ± 0.09120.6675 ± 0.0058
edge-proposal-sets-for-link-predictionNo14210570.7495 ± 0.03170.6696 ± 0.0198
模型 27No102352810.7385 ± 0.08710.7225 ± 0.0047
pairwise-learning-for-neural-link-predictionNo34974730.9088 ± 0.03130.8242 ± 0.0253
path-aware-siamese-graph-neural-network-forNo34990090.9284 ± 0.00470.8306 ± 0.0134
模型 30No17633290.7672 ± 0.02650.6713 ± 0.0071
open-graph-benchmark-datasets-for-machineNo12241930.1368 ± 0.04750.3370 ± 0.0264