Metric Learning On Cub 200 2011
评估指标
R@1
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | R@1 |
---|---|
local-similarity-aware-deep-feature-embedding | 58.3 |
integrating-language-guidance-into-vision | 71.4 |
improved-embeddings-with-easy-positive | 57.3 |
proxy-anchor-loss-for-deep-metric-learning | 71.1 |
hard-negative-examples-are-hard-but-useful | 57.7 |
proxynca-revisiting-and-revitalizing-proxy | 69.0 |
the-group-loss-for-deep-metric-learning | 65.5 |
attention-based-ensemble-for-deep-metric | 60.6 |
metric-learning-with-horde-high-order | 66.8 |
calibrated-neighborhood-aware-confidence | 74.9 |
improved-embeddings-with-easy-positive | 64.9 |
metric-learning-cross-entropy-vs-pairwise | 69.2 |
learning-intra-batch-connections-for-deep | 71.8 |
learning-semantic-proxies-from-visual-prompts | 88.5 |
non-isotropy-regularization-for-proxy-based | 70.5 |
center-contrastive-loss-for-metric-learning | 73.45 |
towards-interpretable-deep-metric-learning | 68.15 |
pads-policy-adapted-sampling-for-visual | 67.3 |
unicom-universal-and-compact-representation | 90.1 |
hardness-aware-deep-metric-learning | 53.7 |
hyperbolic-vision-transformers-combining | 85.6 |
diva-diverse-visual-feature-aggregation | 69.2 |
s2sd-simultaneous-similarity-based-self | 70.1 |
attributable-visual-similarity-learning | 71.9 |
dissecting-the-impact-of-different-loss | 63.8 |
it-takes-two-to-tango-mixup-for-deep-metric | 71.4 |
sampling-matters-in-deep-embedding-learning | 63.6 |
hard-aware-deeply-cascaded-embedding | 60.7 |
mic-mining-interclass-characteristics-for | 66.1 |
softtriple-loss-deep-metric-learning-without | 65.4 |