HyperAI超神经

Metric Learning On Cub 200 2011

评估指标

R@1

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称R@1
local-similarity-aware-deep-feature-embedding58.3
integrating-language-guidance-into-vision71.4
improved-embeddings-with-easy-positive57.3
proxy-anchor-loss-for-deep-metric-learning71.1
hard-negative-examples-are-hard-but-useful57.7
proxynca-revisiting-and-revitalizing-proxy69.0
the-group-loss-for-deep-metric-learning65.5
attention-based-ensemble-for-deep-metric60.6
metric-learning-with-horde-high-order66.8
calibrated-neighborhood-aware-confidence74.9
improved-embeddings-with-easy-positive64.9
metric-learning-cross-entropy-vs-pairwise69.2
learning-intra-batch-connections-for-deep71.8
learning-semantic-proxies-from-visual-prompts88.5
non-isotropy-regularization-for-proxy-based70.5
center-contrastive-loss-for-metric-learning73.45
towards-interpretable-deep-metric-learning68.15
pads-policy-adapted-sampling-for-visual67.3
unicom-universal-and-compact-representation90.1
hardness-aware-deep-metric-learning53.7
hyperbolic-vision-transformers-combining85.6
diva-diverse-visual-feature-aggregation69.2
s2sd-simultaneous-similarity-based-self70.1
attributable-visual-similarity-learning71.9
dissecting-the-impact-of-different-loss63.8
it-takes-two-to-tango-mixup-for-deep-metric71.4
sampling-matters-in-deep-embedding-learning63.6
hard-aware-deeply-cascaded-embedding60.7
mic-mining-interclass-characteristics-for66.1
softtriple-loss-deep-metric-learning-without65.4