HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
分子性质预测
Molecular Property Prediction On Freesolv
Molecular Property Prediction On Freesolv
评估指标
R2
RMSE
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
R2
RMSE
Paper Title
Repository
N-GramXGB
-
5.061
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
PretrainGNN
-
2.764
Strategies for Pre-training Graph Neural Networks
N-GramRF
-
2.688
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
GROVER (large)
-
2.272
Self-Supervised Graph Transformer on Large-Scale Molecular Data
GROVER (base)
-
2.176
Self-Supervised Graph Transformer on Large-Scale Molecular Data
D-MPNN
-
2.082
Analyzing Learned Molecular Representations for Property Prediction
ChemRL-GEM
-
1.877
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
-
SPMM
-
1.859
Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model
S-CGIB
-
1.648±0.074
Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck
-
Uni-Mol
-
1.620
Uni-Mol: A Universal 3D Molecular Representation Learning Framework
-
GraphGPS
0.861±0.037
1.462±0.188
Recipe for a General, Powerful, Scalable Graph Transformer
ChemBFN
-
1.418
A Bayesian Flow Network Framework for Chemistry Tasks
SMA
-
1.09
Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
Graphormer
0.927±0.005
1.065±0.039
Do Transformers Really Perform Bad for Graph Representation?
TokenGT
0.930±0.018
1.038±0.125
Pure Transformers are Powerful Graph Learners
PNA
0.951±0.009
0.870±0.081
Principal Neighbourhood Aggregation for Graph Nets
GCN
0.957±0.009
0.815±0.086
Semi-Supervised Classification with Graph Convolutional Networks
GAT
0.959±0.011
0.791±0.101
Graph Attention Networks
GIN
0.964±0.008
0.744±0.083
How Powerful are Graph Neural Networks?
GATv2
0.970±0.007
0.676±0.081
How Attentive are Graph Attention Networks?
0 of 22 row(s) selected.
Previous
Next