HyperAI超神经

Motion Forecasting On Argoverse Cvpr 2020

评估指标

DAC (K=6)
MR (K=1)
MR (K=6)
brier-minFDE (K=6)
minADE (K=1)
minADE (K=6)
minFDE (K=1)
minFDE (K=6)

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称DAC (K=6)MR (K=1)MR (K=6)brier-minFDE (K=6)minADE (K=1)minADE (K=6)minFDE (K=1)minFDE (K=6)
模型 10.98310.59330.16742.09991.71760.88533.79661.4055
tenet-transformer-encoding-network-for0.98630.55960.12721.76671.65650.81213.60811.2141
模型 30.92630.74980.74984.92092.16862.16864.92094.9209
模型 40.88570.83480.83487.88753.53333.53337.88757.8875
模型 50.91830.73520.59014.09992.38651.60555.4883.4055
模型 60.89770.81220.69166.13152.96312.34326.81165.437
模型 70.98770.57910.14321.91621.68560.81863.75881.2754
模型 80.98360.58730.15972.04951.70240.86793.76421.355
模型 90.98380.57010.14381.87521.62420.83313.581.2748
模型 100.91240.87740.55044.14573.4671.78757.45463.4512
模型 110.98560.71610.15892.10822.27090.95835.02161.4138
模型 120.97380.66850.66854.09721.83121.83124.09724.0972
模型 130.98740.55980.13061.781.62440.813.55721.1996
模型 140.98870.64670.16762.36131.91080.994.25971.6668
模型 150.96710.83550.48894.19883.64951.8888.11973.5044
模型 160.98260.6690.18492.0832.03630.91054.58071.4341
模型 170.98430.56650.14741.9541.62170.82943.55081.2595
模型 180.97590.67950.67954.17041.87051.87054.17044.1704
模型 190.98710.58770.14341.99221.73680.89483.78741.2978
leveraging-future-relationship-reasoning-for0.98780.57280.1431.93651.70630.81653.74861.2671
模型 210.99120.59180.2052.35441.85941.14633.82161.7597
home-heatmap-output-for-future-motion0.9830.57230.08461.86011.69860.89043.6811.2919
模型 230.84410.88680.88688.75223.97713.97718.75228.7522
模型 240.91850.76680.76685.71682.18752.18755.02245.0224
模型 250.96910.68250.68254.26731.91231.91234.26734.2673
模型 260.70420.99670.989326.405730.752428.381331.151325.7113
模型 270.98820.54010.12231.80951.50970.75433.36211.1376
模型 280.89770.81220.69166.13152.96312.34326.81165.437
模型 290.98830.55550.12971.87381.62660.78633.58251.1974
模型 300.98350.60190.15862.0441.74530.86423.89811.3496
模型 310.99220.51540.10321.68201.44120.72823.17771.0566
模型 320.97990.60360.17642.04081.730.86213.87821.4071
模型 330.98480.63540.16772.08841.890.88884.22651.401
模型 340.98290.58710.14711.90061.68640.84063.74771.2785
模型 350.98540.61220.16922.14861.73430.89633.85321.4542
lanercnn-distributed-representations-for0.99030.56850.12322.1471.68520.90383.69161.4526
模型 370.99310.53480.53483.29231.54071.54073.29233.2923
模型 380.98350.57560.57563.51541.59691.59693.51543.5154
模型 390.98750.67490.25852.82662.04141.15184.63252.1322
模型 400.98340.62410.62413.99731.8091.8093.99733.9973
模型 410.7550.98510.981723.39412.314611.829623.727622.6995
r-pred-two-stage-motion-prediction-via-tube0.9920.53440.11651.77651.58430.76293.47181.1236
模型 430.98980.58670.1152.09781.91051.21873.82171.5582
模型 440.89770.81220.69166.13152.96312.34326.81165.437
模型 450.98920.57540.13031.85841.67880.81943.70871.2186
模型 460.95140.78920.41413.56542.90291.48116.83012.871
模型 470.14751.00.82616.336238.94553.54157.70465.6417
模型 480.91180.80870.80875.82392.53442.53445.82395.8239
模型 490.98170.58270.16512.06511.66660.8663.68861.3707
multi-modal-motion-prediction-with0.98520.60230.14291.93931.7350.83723.90071.2905
模型 510.98120.63210.17912.07981.84360.90134.08751.4384
模型 520.89340.78610.33892.72772.59041.13945.71322.0333
模型 530.98490.62720.15912.0061.81030.87033.97331.3505
模型 540.98930.54350.11631.79631.50990.77973.32971.1675
模型 550.98240.59660.16662.07141.71680.87023.81711.377
模型 560.86970.84490.84498.37923.37263.37267.73927.7392
wayformer-motion-forecasting-via-simple0.98930.57160.11861.74081.6360.76763.65591.1616
模型 580.98640.56340.14081.97371.62620.83083.58511.2793
模型 590.94850.76010.6784.96663.01072.08396.6884.2735
模型 600.9640.83550.58214.72033.64952.07758.11974.0258
模型 610.98120.59260.16471.99811.71630.88093.8011.3845
模型 620.98660.55650.14271.97441.58510.84443.48381.28
模型 630.98510.62770.1952.53161.91521.07834.1941.8371
prank-motion-prediction-based-on-ranking0.98910.59550.59553.82391.72841.72843.82393.8239
模型 650.98470.57640.13951.89881.6450.82773.60291.2532
模型 660.94370.79640.41993.80512.59111.87035.60383.1107
thomas-trajectory-heatmap-output-with-learned-10.97810.56130.10381.97361.66860.94233.5931.4388
模型 680.95680.71710.53634.26432.40321.69395.46213.5698
模型 690.99090.5530.12091.81881.62870.8183.52631.1888
模型 700.98250.63330.17322.20041.87850.91724.22591.506
模型 710.98420.61780.1542.03281.77370.84364.00331.3383
模型 720.43230.99360.931224.351517.012212.658434.337623.657
模型 730.91920.77730.77735.12472.21812.21815.12475.1247
模型 740.91790.65760.54283.79211.91031.50314.29233.0976
模型 750.95210.9430.35392.81024.97451.221610.02982.1157
trajectory-forecasting-on-temporal-graphs0.98370.59840.15281.92851.77160.86073.90311.3055
模型 770.42220.65170.35792.9942.38961.86944.10082.2995
模型 780.98360.58730.15972.04951.70240.86793.76431.355
模型 790.35250.7370.65835.042622.37282.147625.49244.7166
模型 800.97420.90830.51564.82535.56992.296811.05154.1309
模型 810.98650.74520.15892.0482.19020.8484.9151.3536
模型 820.97760.72850.19512.15762.22830.91635.09441.4631
模型 830.98150.63750.18652.04341.86370.88324.15111.4262
模型 840.98760.7180.32763.23272.42281.5495.29432.5765
模型 850.990.5750.12661.85671.7150.82853.75821.2403
模型 860.98250.59810.16031.98631.79780.8614.04151.3527
模型 870.98910.59720.1461.9461.73380.86363.84761.3399
模型 880.98160.59330.12172.13861.79950.98923.83571.5159
模型 890.98750.58430.12581.97591.67910.88173.63211.2815
模型 900.9470.66880.38573.22771.92761.35684.27382.4881
模型 910.98890.58620.1481.96351.6980.8363.73951.2863
模型 920.89770.81220.69166.13152.96312.34326.81165.437
模型 930.98770.63220.17072.10921.95360.88414.28541.4204
模型 940.98480.63120.16352.05741.83970.87584.10611.3715
模型 950.9840.61510.10592.18981.80140.97793.94181.4953
模型 960.97760.59680.17382.09751.7310.87753.85921.4031
模型 970.98880.57420.13271.94231.64920.86743.58791.2703
模型 980.98050.61580.16662.08571.77620.89863.90791.3913
模型 990.98390.62010.62013.98611.80621.80623.98613.9861
模型 1000.90440.81970.81976.19542.72912.72916.19546.1954
模型 1010.94080.86590.52033.88993.38581.6847.61863.1954
模型 1020.98160.63290.18042.10011.90160.9164.21191.4591
模型 1030.88780.87090.6555.63083.41522.57057.23774.9364
ganet-goal-area-network-for-motion0.98990.54990.11791.78991.59210.8063.45481.1605
模型 1050.890.86020.86026.07712.72712.72716.07716.0771
模型 1060.98140.63530.17952.10371.89880.89434.23531.4645
模型 1070.98980.58140.13411.9181.65610.80123.64961.2235
模型 1080.86540.90680.90686.9923.25533.25536.9926.992
模型 1090.29390.99990.82376.293132.90343.233146.72685.5987
模型 1100.94950.77560.39832.99672.79491.35026.05242.3501
模型 1110.99030.55790.1211.88171.61170.8133.50871.1873
模型 1120.97250.63440.21792.2431.90440.94364.19171.5486
模型 1130.97690.67020.21292.16112.04010.96874.52991.5716
模型 1140.86970.8890.8896.72473.10883.10886.72476.7247
模型 1150.98260.60740.16192.06821.73650.87153.84821.3737
模型 1160.96990.78370.21892.32772.63920.96936.0291.6332
模型 1170.98070.58520.16962.09931.67370.88583.68371.4049
模型 1180.98360.58730.15972.04951.70240.86793.76431.355
模型 1190.98360.58730.15972.04951.70240.86793.76431.355
holistic-transformer-a-joint-neural-network0.98650.54960.13031.91721.56920.81233.42841.2227
multipath-efficient-information-fusion-and0.98760.56450.13241.79321.62350.78973.61411.2144
模型 1220.91430.8060.8065.81852.53292.53295.81855.8185
模型 1230.97430.68790.31912.72372.09871.16244.66422.1036
模型 1240.8320.90640.7095.60715.88412.82311.30514.9126
模型 1250.9810.59620.17252.11361.71910.88833.80391.4192
模型 1260.77560.92380.92388.14413.95213.95218.14418.1441
模型 1270.98270.58750.15912.041.68830.8623.72741.3456
模型 1280.96020.62780.2142.26881.83350.93034.12741.5984
模型 1290.89830.83790.78056.05652.68832.49435.84515.362
模型 1300.9910.78280.29043.21962.95761.45376.36732.5476
模型 1310.97180.84570.49033.79433.30351.60567.42993.0999
模型 1320.88570.83480.83487.88753.53333.53337.88757.8875
模型 1330.98650.76560.39693.17882.58881.41615.74652.4845
模型 1340.98080.61270.17792.47811.83121.04164.011.7936
模型 1350.93970.74110.35532.81472.25581.18075.15812.2379
模型 1360.9580.8020.34343.09013.03381.40247.07022.3957
模型 1370.90920.58870.15012.005811.386111.28343.78321.3114
模型 1380.98180.58890.16732.07171.70410.86633.78271.3772
模型 1390.9510.67910.67914.51962.00312.00314.51964.5196
crat-pred-vehicle-trajectory-prediction-with0.95580.63230.26242.59261.81621.06264.05761.8981
模型 1410.89770.81220.69166.13152.96312.34326.81165.437
模型 1420.77340.81510.68995.33632.82572.15646.39464.6394
模型 1430.98360.58730.15972.04951.70240.86793.76431.355
模型 1440.98860.55770.13511.91751.64530.79493.62691.2235
模型 1450.95840.74710.33933.20212.46111.25225.59652.5305
模型 1460.94940.73010.28452.81312.10571.13434.82592.1187
模型 1470.88570.83480.83487.88753.53333.53337.88757.8875
模型 1480.88570.83480.83487.88753.53333.53337.88757.8875
tpcn-temporal-point-cloud-networks-for-motion0.98840.56010.13331.92861.57520.81533.48721.2442
dcms-motion-forecasting-with-dual-consistency0.99020.53220.10941.75641.47680.76593.25151.135
模型 1510.87040.850.856.4572.97192.97196.4576.457
模型 1520.98460.58310.13761.9291.70120.8273.78111.2395
模型 1530.91390.83880.49313.75832.98381.63276.88533.0638
模型 1540.98330.64530.16992.09261.87630.89354.17831.3981
模型 1550.98360.58730.15972.04951.70240.86793.76431.355
模型 1560.98980.55140.12071.80061.59590.80573.46481.1693
模型 1570.98780.53780.11551.76541.53490.80533.32161.1385
模型 1580.98950.62860.1291.86911.85210.78544.11631.1872
模型 1590.98870.57660.13831.8831.65720.83323.66041.2694
模型 1600.98830.53950.11431.75681.55990.80143.38141.2139
模型 1610.97930.59280.16572.06511.7120.86833.79851.3707
模型 1620.9790.67420.18842.07832.31480.94145.0531.409
模型 1630.97990.61420.61424.52141.73031.73033.8273.827
模型 1640.98590.56010.14161.9661.62250.83513.56411.2715
模型 1650.9850.58760.16222.04141.74380.88793.76421.3718
模型 1660.98120.65420.19372.14051.99530.97764.31111.5183
gohome-graph-oriented-heatmap-output0.98110.57240.10481.98341.68870.94253.64681.4503
模型 1680.9870.64650.16152.08911.96730.9084.30371.4413
模型 1690.83660.95720.957212.88137.17467.174612.881312.8813
模型 1700.98330.63060.63064.00921.81791.81794.00924.0092
模型 1710.87220.83480.81688.26183.53333.38617.88757.5673
模型 1720.98760.60850.15391.97371.78740.83674.04181.3222
模型 1730.91050.95630.40483.03224.76651.268410.86832.3377
模型 1740.98360.58730.15972.04951.70240.86793.76431.355
模型 1750.9830.86340.18642.13433.00090.88927.06971.4399
模型 1760.98150.63210.18912.20031.87680.93474.13661.5058
模型 1770.980.59050.16342.05851.7060.86793.77861.364
模型 1780.85920.86770.86776.85312.73852.73856.15866.1586
模型 1790.98180.62370.16992.13681.79880.90963.98521.4424
模型 1800.98680.63050.23172.14851.84260.91934.12311.5334
模型 1810.98970.52750.10651.73131.51810.77093.28491.1057
模型 1820.97580.75080.28872.66752.7711.20525.74821.973
模型 1830.8640.93860.93869.50774.65644.65649.50779.5077
ssl-lanes-self-supervised-learning-for-motion0.98440.56710.13261.94331.63420.84013.56431.2493
模型 1850.98810.540.12231.80921.51110.75373.36451.137
模型 1860.86880.87150.57184.2763.45491.81147.88283.5816
模型 1870.92980.76480.76485.84792.28312.28315.15345.1534
模型 1880.98930.52610.11011.69421.4910.76233.26281.1337
模型 1890.88570.83480.83487.88753.53333.53337.88757.8875
模型 1900.18160.65740.10352.279314.992814.91124.16421.5849
模型 1910.98740.55030.13621.94611.58520.81813.471.2517
模型 1920.98330.5750.1542.03051.65470.85253.64891.3361
模型 1930.97620.84050.21862.35842.7970.98776.65111.6639
模型 1940.98730.57910.14371.93091.70610.81423.76261.2651
模型 1950.98310.60080.11462.07121.74910.95183.84351.498
模型 1960.98360.58730.15972.04951.70240.86793.76421.355
模型 1970.91970.77890.39833.08712.54481.43075.66082.3926
模型 1980.95630.65890.20962.2252.28421.29044.39661.5956
模型 1990.98880.56060.13741.83921.61860.81573.55731.2425
模型 2000.93840.73470.72055.46992.14162.14.87484.7755
模型 2010.98460.58310.1512.02141.67680.86053.69511.327
模型 2020.78340.90560.67855.13994.43492.27659.52254.4455
模型 2030.92680.75740.75745.0542.19622.19625.0545.054
模型 2040.89770.81220.69166.13152.96312.34326.81165.437
模型 2050.98920.55630.13241.88721.64050.79173.62261.2124
模型 2060.89770.81220.69166.13152.96312.34326.81165.437
模型 2070.98840.5630.13541.89811.66020.79733.6621.2283
模型 2080.9730.70740.24712.47132.46271.16625.18751.7768
模型 2090.98080.6370.13972.10932.14611.38184.2271.4396
模型 2100.86760.87150.53693.98143.45491.71297.88283.287
模型 2110.95780.72940.51283.97532.2321.60914.70643.2809
模型 2120.98180.61180.10482.18631.78120.95743.90031.4919
模型 2130.88790.9120.9128.85783.56463.56468.16348.1634
模型 2140.98570.5830.12032.05841.69730.86883.75731.3639
模型 2150.88930.89020.64575.48184.48242.12019.43054.7874
模型 2160.980.59090.23332.32231.67370.92963.75411.6362
模型 2170.98150.61720.15922.10391.8030.87794.02351.4095
模型 2180.90420.81170.81176.14542.38052.38055.4515.451
模型 2190.98150.62880.16692.11641.82330.89954.03071.422
模型 2200.98360.64220.18232.31042.00291.13224.3451.6453
模型 2210.91870.7790.73925.69482.46112.34345.32315.0003
模型 2220.9820.5910.16522.07251.71890.88033.79181.3781
query-centric-trajectory-prediction0.98870.52570.10561.69341.52340.73403.34201.0666
模型 2240.98770.57640.14181.97731.67240.83933.65181.2828
模型 2250.96710.80970.41773.47992.81041.39986.50632.7821
模型 2260.98360.58730.15972.04951.70240.86793.76431.355
模型 2270.95670.78020.40513.51412.68851.46086.26822.8196
模型 2280.96370.87050.54234.2553.74081.76918.35293.5606
模型 2290.99120.55280.10751.7941.61240.78193.51161.1127
模型 2300.99220.61330.1422.11141.83860.91164.03091.4503
模型 2310.98830.55860.1361.89151.65880.79433.65681.2212
模型 2320.98070.58710.16112.04821.69060.86263.74181.3537
模型 2330.95180.68080.68085.08721.94241.94244.39274.3927
模型 2340.95060.69820.69824.62112.04892.04894.62114.6211
模型 2350.70640.94760.947611.45565.71325.713211.455611.4556
模型 2360.98140.58910.16742.07891.70550.87413.77051.3844
模型 2370.96560.70320.26112.83812.33791.27745.05782.1774
模型 2380.98340.59670.16232.06991.69680.86673.74961.3755
模型 2390.98620.59980.13521.86781.67020.80263.77241.2339
hivt-hierarchical-vector-transformer-for0.98880.54730.12671.84221.59840.77353.53281.1693
模型 2410.96230.98780.31352.75027.49941.212817.1912.0558
模型 2420.98340.59350.16062.03741.70010.8563.7751.3429
模型 2430.95880.69710.25082.67082.17281.12874.84181.9764
模型 2440.98940.54750.11771.74831.57370.80463.44671.1554
模型 2450.98960.55170.12091.80671.60720.80913.49451.1744
模型 2460.9840.57950.15761.96181.65850.85793.65811.3432
模型 2470.86760.87150.53693.98143.45491.71297.88283.287
模型 2480.97560.6390.18582.05921.85990.91914.09271.4475
hivt-hierarchical-vector-transformer-for0.98910.54310.12211.81711.56190.76733.44491.146
模型 2500.99270.820.41813.35842.90761.38366.54162.6639
模型 2510.98360.58730.15972.04951.70240.86793.76431.355
模型 2520.98680.68560.13082.11541.74140.99734.23721.4209
模型 2530.95110.78240.35912.98452.72621.39885.98192.29
模型 2540.98780.71590.71595.06822.27192.27195.06825.0682
模型 2550.980.60160.60164.36331.65571.65573.66893.6689
模型 2560.98860.54490.11681.75121.56890.7893.40671.1602
模型 2570.98970.54670.12451.83471.55310.7723.45331.1626
模型 2580.98750.54310.11241.72861.53270.76063.36111.1213
模型 2590.88920.80450.52013.40922.67841.45195.9992.7148
模型 2600.87260.9040.40833.1913.30981.26878.01792.4966
模型 2610.97560.60970.17792.12861.79020.88324.01141.4341
模型 2620.98860.56960.12821.92111.63380.84683.57521.2494
模型 2630.98850.55730.13311.89321.63770.79333.6141.2193
模型 2640.9370.85740.52474.57424.72862.31019.73853.8798
模型 2650.98990.59210.12551.88681.81080.80264.05511.2321
模型 2660.98910.59550.59553.82391.72841.72843.82393.8239
模型 2670.98120.58770.1622.05391.70190.87033.76241.3622
模型 2680.97620.61330.22082.26411.77210.96023.90131.5696
模型 2690.97250.65670.65674.11591.85251.85254.11594.1159
模型 2700.83320.89170.54584.109410634487.5868155985.79988.64033.4149
模型 2710.86760.87150.53693.98143.45491.71297.88283.287
模型 2720.89880.88840.73825.66822.98712.41917.01554.9738
模型 2730.98050.59270.16892.07761.72880.87163.83591.3832
模型 2740.98380.60010.16181.96231.73960.83413.92971.3393
模型 2750.98360.58730.15972.04951.70240.86793.76421.355
模型 2760.89650.81390.81396.52022.60032.60035.82575.8257
模型 2770.9460.74940.65824.7872.93372.02826.41754.0938
模型 2780.99130.55730.12071.79921.6320.83443.55051.1568
模型 2790.89770.81220.69166.13152.96312.34326.81165.437
模型 2800.98140.59450.16382.06681.72520.87063.82221.3723
模型 2810.9850.59880.10322.07591.70290.91063.69611.3814
模型 2820.970.68680.68684.19821.86841.86844.19824.1982
模型 2830.89820.81410.81415.47322.4182.4185.47325.4732
tnt-target-driven-trajectory-prediction0.98890.70970.16562.14012.1740.90974.95931.4457
模型 2850.9160.79070.71195.06742.30532.04585.27344.6173
模型 2860.9870.85560.13491.9322.74840.79636.68451.2225
模型 2870.98290.60870.32642.8821.77321.17413.87072.1875
模型 2880.88050.86960.86966.41582.94982.94986.41586.4158
模型 2890.98720.57150.14251.99021.64270.8663.61031.3072
模型 2900.8790.83880.54194.68143.05511.97676.77663.9867
模型 2910.97970.60010.17352.01791.72390.85363.86231.384
模型 2920.90330.89150.89158.02933.93583.93588.02938.0293
模型 2930.98360.58280.1582.04081.68370.86153.72421.3464
模型 2940.98420.70810.15222.01152.05580.84064.86591.3171
模型 2950.98840.56250.14721.85661.62140.83353.54851.2955
模型 2960.98890.70970.16562.14012.1740.90974.95931.4457
模型 2970.98420.67790.18232.36911.9861.02674.48981.7883
模型 2980.98450.59840.59844.4351.69971.69973.74063.7406
模型 2990.91760.77010.77015.96612.29232.29235.27175.2717