HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Named Entity Recognition Ner
Named Entity Recognition On Conll
Named Entity Recognition On Conll
评估指标
F1
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
F1
Paper Title
Repository
BiLSTM-CRF+ELMo
93.42
Deep contextualized word representations
LUKE + SubRegWeigh (K-means)
95.27
SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization
Pooled Flair
94.13
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
Noise-robust Co-regularization + LUKE
95.60
Learning from Noisy Labels for Entity-Centric Information Extraction
LSTM-CRF
91.47
Neural Architectures for Named Entity Recognition
Noise-robust Co-regularization + BERT-large
94.04
Learning from Noisy Labels for Entity-Centric Information Extraction
RoBERTa + SubRegWeigh (K-means)
95.45
SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization
CrossWeigh + Pooled Flair
94.28
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
CL-KL
94.81
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
LUKE(Large)
95.89
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
BiLSTM-CNN-CRF
91.87
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
0 of 11 row(s) selected.
Previous
Next