HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
网络剪枝
Network Pruning On Imagenet
Network Pruning On Imagenet
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
ResNet50-2.3 GFLOPs
78.79
Pruning Filters for Efficient ConvNets
ResNet50-1.5 GFLOPs
78.07
Pruning Filters for Efficient ConvNets
ResNet50 2.5 GFLOPS
78.0
Knapsack Pruning with Inner Distillation
RegX-1.6G
77.97
Group Fisher Pruning for Practical Network Compression
ResNet50 2.0 GFLOPS
77.70
Knapsack Pruning with Inner Distillation
ResNet50-3G FLOPs
77.1
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-2G FLOPs
76.4
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1G FLOPs
76.376
Pruning Filters for Efficient ConvNets
TAS-pruned ResNet-50
76.20
Network Pruning via Transformable Architecture Search
ResNet50
75.59
Network Pruning That Matters: A Case Study on Retraining Variants
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
MobileNetV2
73.42
Group Fisher Pruning for Practical Network Compression
ResNet50
73.14
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks
MobileNetV1-50% FLOPs
70.7
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
SqueezeNet (6-bit Deep Compression)
57.5%
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
0 of 16 row(s) selected.
Previous
Next
Network Pruning On Imagenet | SOTA | HyperAI超神经