HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Node Classification
Node Classification On Texas 60 20 20 Random
Node Classification On Texas 60 20 20 Random
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
MLP-2
92.26 ± 0.71
Revisiting Heterophily For Graph Neural Networks
GCNII*
88.52 ± 3.02
Simple and Deep Graph Convolutional Networks
Geom-GCN*
67.57
Geom-GCN: Geometric Graph Convolutional Networks
ACMII-GCN
95.08 ± 2.07
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
93.44 ± 2.54
Revisiting Heterophily For Graph Neural Networks
APPNP
91.18 ± 0.70
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
BernNet
93.12 ± 0.65
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
ACM-GCNII
92.46 ± 1.97
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
96.56 ± 2
Revisiting Heterophily For Graph Neural Networks
NFGNN
94.03±0.82
Node-oriented Spectral Filtering for Graph Neural Networks
GCN+JK
80.66 ± 1.91
Revisiting Heterophily For Graph Neural Networks
SGC-2
81.31 ± 3.3
Simplifying Graph Convolutional Networks
GraphSAGE
79.03 ± 1.20
Inductive Representation Learning on Large Graphs
GCNII
82.46 ± 4.58
Simple and Deep Graph Convolutional Networks
ACM-GCN+
94.92 ± 2.79
Revisiting Heterophily For Graph Neural Networks
GPRGNN
92.92 ± 0.61
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-1
93.61 ± 1.55
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
95.25 ± 1.55
Revisiting Heterophily For Graph Neural Networks
HH-GAT
80.54 ± 4.80
Half-Hop: A graph upsampling approach for slowing down message passing
GAT+JK
75.41 ± 7.18
Revisiting Heterophily For Graph Neural Networks
0 of 36 row(s) selected.
Previous
Next