HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
物体检测
Object Detection On Coco O
Object Detection On Coco O
评估指标
Average mAP
Effective Robustness
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average mAP
Effective Robustness
Paper Title
Repository
EVA
57.8
28.86
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
DETA (Swin-L)
48.5
20.15
NMS Strikes Back
GLIP-L (Swin-L)
48.0
24.89
Grounded Language-Image Pre-training
GRiT (ViT-H)
42.9
15.72
GRiT: A Generative Region-to-text Transformer for Object Understanding
DINO (Swin-L)
42.1
15.76
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
CBNetV2 (Swin-L)
39.0
12.36
CBNet: A Composite Backbone Network Architecture for Object Detection
ConvNeXt-XL (Cascade Mask R-CNN)
37.5
12.68
A ConvNet for the 2020s
InternImage-L (Cascade Mask R-CNN)
37.0
11.72
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
DyHead (Swin-L)
35.3
10.00
Dynamic Head: Unifying Object Detection Heads with Attentions
ViTDet (ViT-H)
34.3
-
Exploring Plain Vision Transformer Backbones for Object Detection
ViT-Adapter (BEiTv2-L)
34.25
7.79
Vision Transformer Adapter for Dense Predictions
FIBER-B (Swin-B)
33.7
11.43
Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone
QueryInst (Swin-L)
33.2
8.26
Instances as Queries
YOLOv6-L6
32.5
6.73
YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
YOLOv7-E6E
32.0
6.42
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
MViTV2-H (Cascade Mask R-CNN)
30.9
5.62
MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
Det-AdvProp (EfficientNet-B5)
30.8
7.34
Robust and Accurate Object Detection via Adversarial Learning
YOLOv4-P6
30.4
5.89
YOLOv4: Optimal Speed and Accuracy of Object Detection
YOLOX-X
30.3
7.26
YOLOX: Exceeding YOLO Series in 2021
CenterNet2 (R2-101-DCN)
29.5
4.29
Probabilistic two-stage detection
0 of 45 row(s) selected.
Previous
Next
Object Detection On Coco O | SOTA | HyperAI超神经