HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
全景分割
Panoptic Segmentation On Ade20K Val
Panoptic Segmentation On Ade20K Val
评估指标
AP
PQ
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
PQ
mIoU
Paper Title
Repository
OneFormer (InternImage-H, emb_dim=256, single-scale, 896x896)
40.2
54.5
60.4
OneFormer: One Transformer to Rule Universal Image Segmentation
OpenSeed(SwinL, single scale, 1280x1280)
-
53.7
-
A Simple Framework for Open-Vocabulary Segmentation and Detection
OneFormer (DiNAT-L, single-scale, 1280x1280, COCO-Pretrain)
-
53.4
58.9
OneFormer: One Transformer to Rule Universal Image Segmentation
X-Decoder (Davit-d5, Deform, single-scale, 1280x1280)
38.7
52.4
59.1
Generalized Decoding for Pixel, Image, and Language
OneFormer (DiNAT-L, single-scale, 1280x1280)
37.1
51.5
58.3
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (Swin-L, single-scale, 1280x1280)
37.8
51.4
57.0
OneFormer: One Transformer to Rule Universal Image Segmentation
kMaX-DeepLab (ConvNeXt-L, single-scale, 1281x1281)
-
50.9
55.2
kMaX-DeepLab: k-means Mask Transformer
OneFormer (DiNAT-L, single-scale, 640x640)
36.0
50.5
58.3
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (ConvNeXt-XL, single-scale, 640x640)
36.3
50.1
57.4
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (ConvNeXt-L, single-scale, 640x640)
36.2
50.0
56.6
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (Swin-L, single-scale, 640x640)
35.9
49.8
57.0
OneFormer: One Transformer to Rule Universal Image Segmentation
X-Decoder (L)
35.8
49.6
58.1
Generalized Decoding for Pixel, Image, and Language
DiNAT-L (Mask2Former, 640x640)
35.0
49.4
56.3
Dilated Neighborhood Attention Transformer
kMaX-DeepLab (ConvNeXt-L, single-scale, 641x641)
-
48.7
54.8
kMaX-DeepLab: k-means Mask Transformer
Mask2Former (Swin-L)
34.2
48.1
54.5
Masked-attention Mask Transformer for Universal Image Segmentation
Mask2Former (Swin-L + FAPN, 640x640)
33.2
46.2
55.4
Masked-attention Mask Transformer for Universal Image Segmentation
kMaX-DeepLab (ResNet50, single-scale, 1281x1281)
-
42.3
45.3
kMaX-DeepLab: k-means Mask Transformer
kMaX-DeepLab (ResNet50, single-scale, 641x641)
-
41.5
45.0
kMaX-DeepLab: k-means Mask Transformer
Mask2Former (ResNet-50, 640x640)
-
39.7
-
Masked-attention Mask Transformer for Universal Image Segmentation
Panoptic-DeepLab (SwideRNet)
-
37.9
50
Masked-attention Mask Transformer for Universal Image Segmentation
0 of 22 row(s) selected.
Previous
Next