HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
全景分割
Panoptic Segmentation On Cityscapes Val
Panoptic Segmentation On Cityscapes Val
评估指标
AP
PQ
PQst
PQth
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
PQ
PQst
PQth
mIoU
Paper Title
Repository
OneFormer (ConvNeXt-L, single-scale, 512x1024, Mapillary Vistas-pretrained)
48.7
70.1
74.1
64.6
84.6
OneFormer: One Transformer to Rule Universal Image Segmentation
Panoptic-DeepLab (SWideRNet [1, 1, 4.5], Mapillary Vistas, multi-scale)
46.8
69.6
-
-
85.3
Scaling Wide Residual Networks for Panoptic Segmentation
-
OneFormer (ConvNeXt-L, single-scale)
46.5
68.51
-
-
83.0
OneFormer: One Transformer to Rule Universal Image Segmentation
Axial-DeepLab-XL (Mapillary Vistas, multi-scale)
44.2
68.5
-
-
84.6
Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
Panoptic-DeepLab (SWideRNet [1, 1, 4.5], Mapillary Vistas, single-scale)
42.8
68.5
-
-
84.6
Scaling Wide Residual Networks for Panoptic Segmentation
-
OneFormer (ConvNeXt-XL, single-scale)
46.7
68.4
-
-
83.6
OneFormer: One Transformer to Rule Universal Image Segmentation
kMaX-DeepLab (single-scale)
44.0
68.4
-
-
83.5
kMaX-DeepLab: k-means Mask Transformer
AFF-Base (single-scale, point-based Mask2Former)
46.2
67.7
71.5
62.5
83.0
AutoFocusFormer: Image Segmentation off the Grid
OneFormer (DiNAT-L, single-scale)
45.6
67.6
-
-
83.1
OneFormer: One Transformer to Rule Universal Image Segmentation
EfficientPS
43.5
67.5
70.3
63.2
82.1
EfficientPS: Efficient Panoptic Segmentation
DiNAT-L (Mask2Former)
44.5
67.2
-
-
83.4
Dilated Neighborhood Attention Transformer
OneFormer (Swin-L, single-scale)
45.6
67.2
-
-
83.0
OneFormer: One Transformer to Rule Universal Image Segmentation
AFF-Small (single-scale, point-based Mask2Former)
44.2
66.9
70.8
61.5
82.2
AutoFocusFormer: Image Segmentation off the Grid
Mask2Former (Swin-L)
43.6
66.6
-
-
82.9
Masked-attention Mask Transformer for Universal Image Segmentation
EfficientPS (Cityscapes-fine)
39.1
64.9
67.7
61.0
90.3
EfficientPS: Efficient Panoptic Segmentation
CMT-DeepLab (MaX-S, single-scale, IN-1K)
-
64.6
-
-
81.4
CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
Panoptic-DeepLab (X71)
38.5
64.1
-
-
81.5
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
Mask2Former + Intra-Batch Supervision (ResNet-50)
-
62.4
67.3
54.7
-
Intra-Batch Supervision for Panoptic Segmentation on High-Resolution Images
COPS (ResNet-50)
34.1
62.1
67.2
55.1
79.3
Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach
AdaptIS (ResNeXt-101)
36.3
62.0
64.4
58.7
79.2
AdaptIS: Adaptive Instance Selection Network
-
0 of 36 row(s) selected.
Previous
Next
Panoptic Segmentation On Cityscapes Val | SOTA | HyperAI超神经