HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Person Re Identification
Person Re Identification On Market 1501 C
Person Re Identification On Market 1501 C
评估指标
Rank-1
mAP
mINP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Rank-1
mAP
mINP
Paper Title
Repository
OS-Net
30.94
10.37
0.23
Omni-Scale Feature Learning for Person Re-Identification
Aligned++
31.00
10.95
0.32
AlignedReID: Surpassing Human-Level Performance in Person Re-Identification
LGPR
27.72
8.26
0.24
A Person Re-identification Data Augmentation Method with Adversarial Defense Effect
CaceNet
42.92
18.24
0.67
Devil in the Details: Towards Accurate Single and Multiple Human Parsing
CIL (ResNet-50)
-
-
-
Benchmarks for Corruption Invariant Person Re-identification
MHN
33.29
10.69
0.38
Mixed High-Order Attention Network for Person Re-Identification
ABD-Net
29.65
9.81
0.26
ABD-Net: Attentive but Diverse Person Re-Identification
BDB
33.79
10.95
0.32
Batch DropBlock Network for Person Re-identification and Beyond
TDB
28.56
8.90
0.20
Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification
DG-Net
31.75
9.96
0.35
Joint Discriminative and Generative Learning for Person Re-identification
RRID
36.57
14.23
0.48
Relation Network for Person Re-identification
SBS (ResNet-50)
34.13
11.54
0.29
FastReID: A Pytorch Toolbox for General Instance Re-identification
TransReID
53.19
27.38
1.98
TransReID: Transformer-based Object Re-Identification
BoT (ResNet-50)
27.05
8.42
0.20
Bag of Tricks and A Strong Baseline for Deep Person Re-identification
MGN
29.56
9.72
0.29
Learning Discriminative Features with Multiple Granularities for Person Re-Identification
PCB
34.93
12.72
0.41
Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
AGW (ResNet-50)
31.90
12.13
0.35
Deep Learning for Person Re-identification: A Survey and Outlook
Pyramid
35.72
12.75
0.36
Pyramidal Person Re-IDentification via Multi-Loss Dynamic Training
LUPerson
-
-
-
Unsupervised Pre-training for Person Re-identification
PLR-OS
37.56
14.23
0.48
Learning Diverse Features with Part-Level Resolution for Person Re-Identification
0 of 22 row(s) selected.
Previous
Next