HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
量化
Quantization On Imagenet
Quantization On Imagenet
评估指标
Top-1 Accuracy (%)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Top-1 Accuracy (%)
Paper Title
Repository
FQ-ViT (ViT-L)
85.03
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
FQ-ViT (ViT-B)
83.31
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
FQ-ViT (Swin-B)
82.97
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
FQ-ViT (Swin-S)
82.71
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
FQ-ViT (DeiT-B)
81.20
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
FQ-ViT (Swin-T)
80.51
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
FQ-ViT (DeiT-S)
79.17
FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
Xception W8A8
78.972
HPTQ: Hardware-Friendly Post Training Quantization
ADLIK-MO-ResNet50-W4A4
77.878
Learned Step Size Quantization
ADLIK-MO-ResNet50-W3A4
77.34
Learned Step Size Quantization
EfficientNet-B0 ReLU W8A8
77.092
HPTQ: Hardware-Friendly Post Training Quantization
ResNet50-W4A4 (paper)
76.7
Learned Step Size Quantization
EfficientNet-B0-W8A8
76.4
HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs
EfficientNet-B0-W4A4
76
HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs
ResNet50-W3A4
75.45
HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs
EfficientNet-B0 W8A8
74.216
HPTQ: Hardware-Friendly Post Training Quantization
MPT (80) +BN
74.03
Multi-Prize Lottery Ticket Hypothesis: Finding Accurate Binary Neural Networks by Pruning A Randomly Weighted Network
EfficientNet-W4A4
73.8
LSQ+: Improving low-bit quantization through learnable offsets and better initialization
DenseNet-121 W8A8
73.356
HPTQ: Hardware-Friendly Post Training Quantization
MixNet-W4A4
71.7
LSQ+: Improving low-bit quantization through learnable offsets and better initialization
0 of 27 row(s) selected.
Previous
Next
Quantization On Imagenet | SOTA | HyperAI超神经