HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
问答
Question Answering On Boolq
Question Answering On Boolq
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
Mistral-Nemo 12B (HPT)
99.87
Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
Gemma-7B
99.419
Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
ST-MoE-32B 269B (fine-tuned)
92.4
ST-MoE: Designing Stable and Transferable Sparse Expert Models
PaLM 540B (fine-tuned)
92.2
PaLM: Scaling Language Modeling with Pathways
Turing NLR v5 XXL 5.4B (fine-tuned)
92
Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE
-
T5-XXL 11B (fine-tuned)
91.2
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
PaLM 2-L (1-shot)
90.9
PaLM 2 Technical Report
UL2 20B (fine-tuned)
90.8
UL2: Unifying Language Learning Paradigms
Vega v2 6B (fine-tuned)
90.5
Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE
-
DeBERTa-1.5B
90.4
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
ST-MoE-L 4.1B (fine-tuned)
88.6
ST-MoE: Designing Stable and Transferable Sparse Expert Models
PaLM 2-M (1-shot)
88.6
PaLM 2 Technical Report
PaLM 2-S (1-shot)
88.1
PaLM 2 Technical Report
MUPPET Roberta Large
87.5
Muppet: Massive Multi-task Representations with Pre-Finetuning
FLAN 137B (prompt-tuned)
86.3
Finetuned Language Models Are Zero-Shot Learners
RoBERTa-large 355M + Entailment as Few-shot Learner
86.0
Entailment as Few-Shot Learner
T5-Large 770M (fine-tuned)
85.4
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
LLaMA 65B (0-shot)
85.3
LLaMA: Open and Efficient Foundation Language Models
LLaMA 2 70B (0-shot)
85
Llama 2: Open Foundation and Fine-Tuned Chat Models
FLAN 137B (4-shot)
84.6
Finetuned Language Models Are Zero-Shot Learners
0 of 66 row(s) selected.
Previous
Next
Question Answering On Boolq | SOTA | HyperAI超神经