HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Question Answering
Question Answering On Drop Test
Question Answering On Drop Test
评估指标
F1
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
F1
Paper Title
Repository
QDGAT (ensemble)
88.38
Question Directed Graph Attention Network for Numerical Reasoning over Text
-
PaLM 2 (few-shot)
85.0
PaLM 2 Technical Report
GPT-3 175B (few-shot, k=32)
36.5
Language Models are Few-Shot Learners
GPT-4 (few-shot, k=3)
80.9
GPT-4 Technical Report
NeRd
81.71
Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension
-
NumNet
67.97
NumNet: Machine Reading Comprehension with Numerical Reasoning
Orca 2-7B
60.26
Orca 2: Teaching Small Language Models How to Reason
-
GPT 3.5 (few-shot, k=3)
64.1
GPT-4 Technical Report
Orca 2-13B
57.97
Orca 2: Teaching Small Language Models How to Reason
-
POET
87.6
Reasoning Like Program Executors
BERT
32.7
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
BERT+Calculator (ensemble)
81.78
Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension
-
NAQA Net
47.01
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
GenBERT (+ND+TD)
72.4
Injecting Numerical Reasoning Skills into Language Models
MTMSN Large
79.88
A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
TASE-BERT
80.7
A Simple and Effective Model for Answering Multi-span Questions
0 of 16 row(s) selected.
Previous
Next