HyperAI超神经

Question Answering On Squad11

评估指标

EM
F1

评测结果

各个模型在此基准测试上的表现结果

模型名称
EM
F1
Paper TitleRepository
SAN (ensemble model)79.60886.496Stochastic Answer Networks for Machine Reading Comprehension
S^3-Net (single model)71.90881.023--
RQA (single model)55.82765.467Harvesting and Refining Question-Answer Pairs for Unsupervised QA
PQMN (single model)68.33177.783--
BERT - 3 Layers77.785.8Information Theoretic Representation Distillation
RuBERT-84.6Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language
BERT-uncased (single model)84.92691.932--
{ANNA} (single model)90.62295.719--
BISAN (single model)85.31491.756--
Conductor-net (single model)74.40582.742Phase Conductor on Multi-layered Attentions for Machine Comprehension-
KACTEIL-MRC(GF-Net+) (single model)78.66485.780--
BERT-Large 32k batch size with AdamW-91.58A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes-
FusionNet (single model)75.96883.900FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension
WD (single model)84.40290.561--
DyREX-91.01DyREx: Dynamic Query Representation for Extractive Question Answering
WAHnGREA0.0000.000--
S^3-Net (ensemble)74.12182.342--
RaSoR + TR (single model)75.78983.261Contextualized Word Representations for Reading Comprehension
RQA+IDR (single model)61.14571.389Harvesting and Refining Question-Answer Pairs for Unsupervised QA
MEMEN (single model)78.23485.344MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension-
0 of 213 row(s) selected.