HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
问答
Question Answering On Squad11 Dev
Question Answering On Squad11 Dev
评估指标
EM
F1
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
EM
F1
Paper Title
Repository
XLNet+DSC
89.79
95.77
Dice Loss for Data-imbalanced NLP Tasks
T5-11B
90.06
95.64
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
XLNet (single model)
89.7
95.1
XLNet: Generalized Autoregressive Pretraining for Language Understanding
LUKE 483M
-
95
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
T5-3B
88.53
94.95
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
T5-Large 770M
86.66
93.79
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
BERT-LARGE (Ensemble+TriviaQA)
86.2
92.2
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
T5-Base
85.44
92.08
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
BERT-LARGE (Single+TriviaQA)
84.2
91.1
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
BART Base (with text infilling)
-
90.8
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
BERT large (LAMB optimizer)
-
90.584
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
BERT-Large-uncased-PruneOFA (90% unstruct sparse)
83.35
90.2
Prune Once for All: Sparse Pre-Trained Language Models
BERT-Large-uncased-PruneOFA (90% unstruct sparse, QAT Int8)
83.22
90.02
Prune Once for All: Sparse Pre-Trained Language Models
BERT-Base-uncased-PruneOFA (85% unstruct sparse)
81.1
88.42
Prune Once for All: Sparse Pre-Trained Language Models
BERT-Base-uncased-PruneOFA (85% unstruct sparse, QAT Int8)
80.84
88.24
Prune Once for All: Sparse Pre-Trained Language Models
TinyBERT-6 67M
79.7
87.5
TinyBERT: Distilling BERT for Natural Language Understanding
BERT-Base-uncased-PruneOFA (90% unstruct sparse)
79.83
87.25
Prune Once for All: Sparse Pre-Trained Language Models
T5-Small
79.1
87.24
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
R.M-Reader (single)
78.9
86.3
Reinforced Mnemonic Reader for Machine Reading Comprehension
DensePhrases
78.3
86.3
Learning Dense Representations of Phrases at Scale
0 of 55 row(s) selected.
Previous
Next
Question Answering On Squad11 Dev | SOTA | HyperAI超神经