HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
场景文本检测
Scene Text Detection On Icdar 2013
Scene Text Detection On Icdar 2013
评估指标
F-Measure
Precision
Recall
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
F-Measure
Precision
Recall
Paper Title
Repository
TextFuseNet (ResNeXt-101)
94.61%
97.27
92.09
TextFuseNet: Scene Text Detection with Richer Fused Features
-
SPCNET
92.1%
93.8
90.5
Scene Text Detection with Supervised Pyramid Context Network
Mask TextSpotter
91.7%
95
88.6
Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes
WordSup (VGG16-synth-icdar)
90.34%
93.34
87.53
WordSup: Exploiting Word Annotations for Character based Text Detection
-
STN-OCR
90.3%
-
-
STN-OCR: A single Neural Network for Text Detection and Text Recognition
PixelLink+VGG16 2s MS
88.1%
88.6
87.5
PixelLink: Detecting Scene Text via Instance Segmentation
Corner Localization (multi-scale)
88%
92
84.4
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation
TextBoxes++_MS
88%%
91
84
TextBoxes++: A Single-Shot Oriented Scene Text Detector
Corner-based Region Proposals
87.6%%
91.9
83.9
Detecting Multi-Oriented Text with Corner-based Region Proposals
SSTD
87%
88
86
Single Shot Text Detector with Regional Attention
SegLink
85.3%
87.7
83
Detecting Oriented Text in Natural Images by Linking Segments
Gupta et al.
83.0%
92.0
75.5
Synthetic Data for Text Localisation in Natural Images
USM (COCO TS + ICDAR–2013)
80.40%
-
-
Unsharp Masking Layer: Injecting Prior Knowledge in Convolutional Networks for Image Classification
-
Neumann et al. *
77.1%
81.8
72.4
Efficient Scene Text Localization and Recognition with Local Character Refinement
-
Jaderberg et al.
76.8%
88.5
67.8
Reading Text in the Wild with Convolutional Neural Networks
-
CRAFT
-
97.4
93.1
Character Region Awareness for Text Detection
0 of 16 row(s) selected.
Previous
Next