HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
语义分割
Semantic Segmentation On Cityscapes
Semantic Segmentation On Cityscapes
评估指标
Mean IoU (class)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Mean IoU (class)
Paper Title
Repository
VLTSeg
86.4
Strong but simple: A Baseline for Domain Generalized Dense Perception by CLIP-based Transfer Learning
MetaPrompt-SD
86.2
Harnessing Diffusion Models for Visual Perception with Meta Prompts
InternImage-H
86.1%
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
HS3-Fuse
85.8%
HS3: Learning with Proper Task Complexity in Hierarchically Supervised Semantic Segmentation
-
InverseForm
85.6%
InverseForm: A Loss Function for Structured Boundary-Aware Segmentation
ViT-Adapter-L (Mask2Former, BEiT pretrain)
85.2%
Vision Transformer Adapter for Dense Predictions
SERNet-Former
84.83
SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks
Depth Anything
84.8%
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
HRNetV2 + OCR +
84.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
EfficientPS
84.21%
EfficientPS: Efficient Panoptic Segmentation
Panoptic-DeepLab
84.2%
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
HRNetV2 + OCR (w/ ASP)
83.7%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
DCNAS(coarse + Mapillary)
83.6%
DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation
-
Euclidean Frank-Wolfe CRFs (backbone: DeepLabv3+)(coarse)
83.6%
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond
ResNeSt200 (Mapillary)
83.3%
ResNeSt: Split-Attention Networks
GALDNet(+Mapillary)++
83.3%
Global Aggregation then Local Distribution in Fully Convolutional Networks
HANet (Height-driven Attention Networks by LGE A&B)(coarse)
83.2%
Cars Can't Fly up in the Sky: Improving Urban-Scene Segmentation via Height-driven Attention Networks
kMaX-DeepLab (ConvNeXt-L, fine only)
83.2%
kMaX-DeepLab: k-means Mask Transformer
SegFormer (MiT-B5, Mapillary)
83.1%
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
MRFM(coarse)
83.0%
Multi Receptive Field Network for Semantic Segmentation
-
0 of 105 row(s) selected.
Previous
Next
Semantic Segmentation On Cityscapes | SOTA | HyperAI超神经