HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
语义分割
Semantic Segmentation On Cityscapes Val
Semantic Segmentation On Cityscapes Val
评估指标
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mIoU
Paper Title
Repository
SERNet-Former
87.35
SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks
MetaPrompt-SD
87.1
Harnessing Diffusion Models for Visual Perception with Meta Prompts
InternImage-H
87
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
HRNetV2-OCR+PSA
86.93
Polarized Self-Attention: Towards High-quality Pixel-wise Regression
InternImage-XL
86.4
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
HRNet-OCR
86.3
Hierarchical Multi-Scale Attention for Semantic Segmentation
Depth Anything
86.2
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
ViT-Adapter-L
85.8
Vision Transformer Adapter for Dense Predictions
OneFormer (ConvNeXt-XL, Mapillary, multi-scale)
85.8
OneFormer: One Transformer to Rule Universal Image Segmentation
SeMask (SeMask Swin-L Mask2Former)
84.98
SeMask: Semantically Masked Transformers for Semantic Segmentation
Soft Labells (HRnet)
84.8
Soft labelling for semantic segmentation: Bringing coherence to label down-sampling
Sequential Ensemble (MiT-B5 + HRNet)
84.8
Sequential Ensembling for Semantic Segmentation
-
OneFormer (ConvNeXt-XL, multi-scale)
84.6
OneFormer: One Transformer to Rule Universal Image Segmentation
DiNAT-L (Mask2Former)
84.5
Dilated Neighborhood Attention Transformer
VPNeXt
84.4
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
-
OneFormer (Swin-L, multi-scale)
84.4
OneFormer: One Transformer to Rule Universal Image Segmentation
Mask2Former (Swin-L)
84.3
Masked-attention Mask Transformer for Universal Image Segmentation
VOLO-D4 (MS, ImageNet1k pretrain)
84.3
VOLO: Vision Outlooker for Visual Recognition
SegFormer (MiT-B5, Mapillary)
84.0
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
DDP (ConvNeXt-L, step-3)
83.9
DDP: Diffusion Model for Dense Visual Prediction
0 of 97 row(s) selected.
Previous
Next
Semantic Segmentation On Cityscapes Val | SOTA | HyperAI超神经