HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
语义分割
Semantic Segmentation On Coco Stuff Test
Semantic Segmentation On Coco Stuff Test
评估指标
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mIoU
Paper Title
Repository
VPNeXt
53.7
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
-
EVA
53.4%
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
RSSeg-ViT-L (BEiT pretrain)
52.6%
Representation Separation for Semantic Segmentation with Vision Transformers
-
RSSeg-ViT-L
52.0%
Representation Separation for Semantic Segmentation with Vision Transformers
-
SegViT (ours)
50.3%
SegViT: Semantic Segmentation with Plain Vision Transformers
SenFormer (Swin-L)
50.1%
Efficient Self-Ensemble for Semantic Segmentation
CAA (Efficientnet-B7)
45.4%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
HRNetV2 + OCR + RMI (PaddleClas pretrained)
45.2%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
CAA (ResNet-101)
41.2%
Channelized Axial Attention for Semantic Segmentation -- Considering Channel Relation within Spatial Attention for Semantic Segmentation
DRAN(ResNet-101)
41.2%
Scene Segmentation with Dual Relation-aware Attention Network
-
OCR (HRNetV2-W48)
40.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
EMANet
39.9%
Expectation-Maximization Attention Networks for Semantic Segmentation
DANet (ResNet-101)
39.7%
Dual Attention Network for Scene Segmentation
SVCNet (ResNet-101)
39.6%
Semantic Correlation Promoted Shape-Variant Context for Segmentation
OCR (ResNet-101)
39.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
Asymmetric ALNN
37.2%
Asymmetric Non-local Neural Networks for Semantic Segmentation
CCL (ResNet-101)
35.7%
Context Contrasted Feature and Gated Multi-Scale Aggregation for Scene Segmentation
-
RefineNet (ResNet-101)
33.6%
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
DAG-RNN (VGG-16)
31.2%
DAG-Recurrent Neural Networks For Scene Labeling
-
FCN (VGG-16)
22.7%
Fully Convolutional Networks for Semantic Segmentation
0 of 20 row(s) selected.
Previous
Next
Semantic Segmentation On Coco Stuff Test | SOTA | HyperAI超神经