HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Semantic Segmentation
Semantic Segmentation On Isprs Potsdam
Semantic Segmentation On Isprs Potsdam
评估指标
Mean F1
Mean IoU
Overall Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Mean F1
Mean IoU
Overall Accuracy
Paper Title
Repository
AerialFormer-B
94.1
89.1
93.9
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
LSKNet-S
93.1
87.2
92.0
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
PSPNet (SAP)
-
74.3
88.56
Stochastic Subsampling With Average Pooling
-
ViT-B + RVSA-UperNet
-
-
90.77
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
EfficientUNets and Transformers
93.7
-
91.8
Semantic Labeling of High Resolution Images Using EfficientUNets and Transformers
-
BANet
-
-
91.06
Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images
FT-UNetFormer
93.3
87.5
92.0
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
RSP-Swin-T-UperNet
-
-
90.78
An Empirical Study of Remote Sensing Pretraining
MANet
-
-
91.318
Multiattention network for semantic segmentation of fine-resolution remote sensing images
-
U-Net (ConvFormer-M36)
-
89.45
-
U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
-
ViTAE-B + RVSA -UperNet
-
-
91.22
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
ViT-G12X4
92.12
-
92.58
A Billion-scale Foundation Model for Remote Sensing Images
-
RSP-ResNet-50-UperNet
-
-
90.61
An Empirical Study of Remote Sensing Pretraining
RSP-ViTAEv2-S-UperNet
-
-
91.21
An Empirical Study of Remote Sensing Pretraining
ABCNet
-
-
91.3
ABCNet: Attentive Bilateral Contextual Network for Efficient Semantic Segmentation of Fine-Resolution Remote Sensing Images
IMP-ViTAEv2-S-UperNet
-
-
91.6
An Empirical Study of Remote Sensing Pretraining
UNetFormer
92.8
86.8
91.3
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
DC-Swin
93.25
87.56
92.0
A Novel Transformer Based Semantic Segmentation Scheme for Fine-Resolution Remote Sensing Images
SFA-Net
93.5
-
-
SFA-Net: Semantic Feature Adjustment Network for Remote Sensing Image Segmentation
0 of 19 row(s) selected.
Previous
Next