HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Semantic Segmentation
Semantic Segmentation On Nyu Depth V2
Semantic Segmentation On Nyu Depth V2
评估指标
Mean IoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Mean IoU
Paper Title
Repository
DynMM (ResNet-50)
51.0%
Dynamic Multimodal Fusion
GeminiFusion (Swin-Large)
60.9
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
CMX (B2)
54.4%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
LS-DeconvNet
45.9%
Locality-Sensitive Deconvolution Networks With Gated Fusion for RGB-D Indoor Semantic Segmentation
-
ESANet (R18-NBt1D )
48.17
Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis
-
3DGNN
43.1%
3D Graph Neural Networks for RGBD Semantic Segmentation
AsymFormer
55.3%
AsymFormer: Asymmetrical Cross-Modal Representation Learning for Mobile Platform Real-Time RGB-D Semantic Segmentation
AsymFusion (ResNet-152)
51.2%
Learning Deep Multimodal Feature Representation with Asymmetric Multi-layer Fusion
SwinMTL
58.14%
SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images
OmniVec2
63.6
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
-
MMAF-Net-152
44.8%
Multi-Modal Attention-based Fusion Model for Semantic Segmentation of RGB-Depth Images
-
GeminiFusion (MiT-B3)
56.8
GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer
Cross-stitch
19.3%
Cross-stitch Networks for Multi-task Learning
HN-network
33.49%
RGB-based Semantic Segmentation Using Self-Supervised Depth Pre-Training
-
CMNeXt (B4)
56.9%
Delivering Arbitrary-Modal Semantic Segmentation
CFN
47.7%
Cascaded Feature Network for Semantic Segmentation of RGB-D Images
-
NDDR-CNN
43.3%
NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction
ACNet
48.3%
ACNet: Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation
Malleable 2.5D (ResNet-101)
50.9%
Malleable 2.5D Convolution: Learning Receptive Fields along the Depth-axis for RGB-D Scene Parsing
SGACNet (R34-NBt1D)
49.4%
Spatial-information Guided Adaptive Context-aware Network for Efficient RGB-D Semantic Segmentation
0 of 116 row(s) selected.
Previous
Next