Semi Supervised Image Classification On Cifar 2
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | Percentage error |
---|---|
self-meta-pseudo-labels-meta-pseudo-labels | 21.68 |
dash-semi-supervised-learning-with-dynamic | 21.97±0.14 |
class-aware-contrastive-semi-supervised | 19.32 |
flexmatch-boosting-semi-supervised-learning | 21.90±0.15 |
freematch-self-adaptive-thresholding-for-semi | 21.68 |
regularization-with-stochastic | 39.19 |
simple-similar-pseudo-label-exploitation-for | 21.89 |
shot-vae-semi-supervised-deep-generative | 25.3 |
repetitive-reprediction-deep-decipher-for | 32.87 |
laplacenet-a-hybrid-energy-neural-model-for | 22.11± 0.23 |
simmatch-semi-supervised-learning-with | 20.58 |
dual-student-breaking-the-limits-of-the | 32.77 |
dp-ssl-towards-robust-semi-supervised | 22.24±0.31 |
all-labels-are-not-created-equal-enhancing | 24.45±0.12 |
fixmatch-simplifying-semi-supervised-learning | 23.18±0.11 |
temporal-ensembling-for-semi-supervised | 38.65 |
np-match-when-neural-processes-meet-semi | 21.22 |
milking-cowmask-for-semi-supervised-image | 23.07±0.30 |
enaet-self-trained-ensemble-autoencoding | 26.93±0.21 |
contrastive-regularization-for-semi | 21.03 |
fixmatch-simplifying-semi-supervised-learning | 22.6 |
enaet-self-trained-ensemble-autoencoding | 22.92 |
doublematch-improving-semi-supervised | 21.22± 0.17 |
in-defense-of-pseudo-labeling-an-uncertainty-1 | 32 |
模型 25 | 20.42±0.17 |
semi-supervised-learning-with-self-supervised | 38.7 |
lidam-semi-supervised-learning-with-localized | 23.22 |