HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
半监督图像分类
Semi Supervised Image Classification On Svhn
Semi Supervised Image Classification On Svhn
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
Meta Pseudo Labels (WRN-28-2)
98.01 ± 0.07
Meta Pseudo Labels
DoubleMatch
97.90 ± 0.07
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
FixMatch (CTA)
97.64±0.19
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
EnAET
97.58
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
UDA
97.54
Unsupervised Data Augmentation for Consistency Training
ReMixMatch
97.17
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
MixMatch
96.73
MixMatch: A Holistic Approach to Semi-Supervised Learning
Triple-GAN-V2 (CNN-13)
96.55
Triple Generative Adversarial Networks
ICT (WRN-28-2)
96.47
Interpolation Consistency Training for Semi-Supervised Learning
R2-D2 (CNN-13)
96.36
Repetitive Reprediction Deep Decipher for Semi-Supervised Learning
FCE
96.13
Flow Contrastive Estimation of Energy-Based Models
ICT
96.11
Interpolation Consistency Training for Semi-Supervised Learning
Mean Teacher
96.05
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Triple-GAN-V2 (CNN-13, no aug)
96.04
Triple Generative Adversarial Networks
VAT
94.58
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
SESEMI SSL (ConvNet)
94.41
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
GAN
91.89
Improved Techniques for Training GANs
0 of 17 row(s) selected.
Previous
Next
Semi Supervised Image Classification On Svhn | SOTA | HyperAI超神经