HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
半监督语义分割
Semi Supervised Semantic Segmentation On 1
Semi Supervised Semantic Segmentation On 1
评估指标
Validation mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Validation mIoU
Paper Title
Repository
UniMatch V2 (DINOv2-B)
84.5%
UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation
SemiVL (ViT-B/16)
80.3%
SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance
PrevMatch (ResNet-101)
80.1%
Revisiting and Maximizing Temporal Knowledge in Semi-supervised Semantic Segmentation
S4MC
79.52%
Semi-Supervised Semantic Segmentation via Marginal Contextual Information
Dual Teacher (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
79.46
Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
-
CorrMatch (Deeplabv3+ with ResNet-101)
79.4%
CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation
UniMatch (DeepLab v3+ with ImageNet-pretrained ResNet-101, single scale inference)
79.22%
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation
CPS (DeepLab v3+ with ImageNet-pretrained ResNet-101, single scale inference)
79.21%
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
AEL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
79.01%
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
PrevMatch (ResNet-50)
78.8%
Revisiting and Maximizing Temporal Knowledge in Semi-supervised Semantic Segmentation
U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL)
78.51%
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
CW-BASS (DeepLab v3+ with ResNet-50)
78.43%
CW-BASS: Confidence-Weighted Boundary-Aware Learning for Semi-Supervised Semantic Segmentation
n-CPS (ResNet-50)
78.41%
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
-
PCR (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
78.4%
Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization
PS-MT (DeepLab v3+ with ImageNet-pretrained ResNet-50, single scale inference)
78.38%
Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
LaserMix (DeepLab v3+, ImageNet pre- trained ResNet50, single scale inference)
78.3%
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
SimpleBaseline(DeepLabv3+ with ImageNet pretrained Xception65, single scale inference)
77.8%
A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
CPCL (DeepLab v3+ with ResNet-50)
76.98%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
Error Localization Network (DeeplabV3 with ResNet-50)
73.52%
Semi-supervised Semantic Segmentation with Error Localization Network
SegSDE (MTL decoder with ResNet101, ImageNet pretrained, unlabeled image sequences)
69.38%
Three Ways to Improve Semantic Segmentation with Self-Supervised Depth Estimation
0 of 29 row(s) selected.
Previous
Next
Semi Supervised Semantic Segmentation On 1 | SOTA | HyperAI超神经