Semi Supervised Semantic Segmentation On 1
评估指标
Validation mIoU
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | Validation mIoU |
---|---|
a-simple-baseline-for-semi-supervised | 77.8% |
semi-supervised-semantic-segmentation-using-2 | 78.51% |
semi-supervised-semantic-segmentation-via-3 | 79.52% |
bootstrapping-semantic-segmentation-with | 68.50% |
semi-supervised-semantic-segmentation-with-3 | 79.21% |
unimatch-v2-pushing-the-limit-of-semi | 84.5% |
perturbed-and-strict-mean-teachers-for-semi | 78.38% |
revisiting-and-maximizing-temporal-knowledge | 78.8% |
lasermix-for-semi-supervised-lidar-semantic | 78.3% |
semi-supervised-semantic-segmentation-with-5 | 73.52% |
guidedmix-net-learning-to-improve-pseudo | 67.5% |
semivl-semi-supervised-semantic-segmentation | 80.3% |
adversarial-learning-for-semi-supervised | 60.5% |
confidence-weighted-boundary-aware-learning | 78.43% |
switching-temporary-teachers-for-semi | 79.46 |
the-gist-and-rist-of-iterative-self-training | 65.14% |
bootstrapping-semantic-segmentation-with | 67.53% |
three-ways-to-improve-semantic-segmentation | 69.38% |
corrmatch-label-propagation-via-correlation | 79.4% |
consistency-regularization-and-cutmix-for | 63.87% |
semi-supervised-semantic-segmentation-with-6 | 78.4% |
semi-supervised-semantic-segmentation-with-2 | 65.9% |
classmix-segmentation-based-data-augmentation | 63.63% |
semi-supervised-semantic-segmentation-with | 61.9% |
semi-supervised-semantic-segmentation-via-2 | 79.01% |
conservative-progressive-collaborative | 76.98% |
n-cps-generalising-cross-pseudo-supervision | 78.41% |
revisiting-and-maximizing-temporal-knowledge | 80.1% |
revisiting-weak-to-strong-consistency-in-semi | 79.22% |