HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
半监督语义分割
Semi Supervised Semantic Segmentation On 15
Semi Supervised Semantic Segmentation On 15
评估指标
Validation mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Validation mIoU
Paper Title
Repository
S4MC
81.11
Semi-Supervised Semantic Segmentation via Marginal Contextual Information
PCR (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
80.91%
Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization
U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, CutMix)
80.5%
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
AEL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
80.29%
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
n-CPS (ResNet-101)
80.26%
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
-
PS-MT (DeepLab v3+ with ImageNet-pretrained ResNet-101, single scale inference)
79.76%
Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
GuidedMix-Net(DeepLab v2 with ResNet101, input-size: 512x512 with multi-scale and flip, ImageNet pretrained)
78.2%
GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as Reference
CPCL (DeepLab v3+ with ResNet-101)
77.67%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
PCT (DeepLab v3+ with ResNet-50 pretrained on ImageNet-1K)
77.26%
Learning Pseudo Labels for Semi-and-Weakly Supervised Semantic Segmentation
-
n-CPS (ResNet-50)
77.07%
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
-
GuidedMix-Net(DeepLab v2 with ResNet101, ImageNet pretrained)
76.5%
GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as Reference
CPCL (DeepLab v3+ with ResNet-50)
75.3%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
74.73%
Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks
Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
71.69%
Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks
0 of 14 row(s) selected.
Previous
Next
Semi Supervised Semantic Segmentation On 15 | SOTA | HyperAI超神经