HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
睡眠阶段检测
Sleep Stage Detection On Shhs
Sleep Stage Detection On Shhs
评估指标
Accuracy
Cohen's Kappa
Macro-F1
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Cohen's Kappa
Macro-F1
Paper Title
Repository
SynthSleepNet (EEG2+EOG2+EMG1)
89.89%
0.860
0.845
Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
CoRe-Sleep (EEG-EOG)
89.5%
0.853
0.823
CoRe-Sleep: A Multimodal Fusion Framework for Time Series Robust to Imperfect Modalities
-
SynthSleepNet (EEG1+EOG1+EMG1)
89.28%
0.850
0.835
Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
XSleepNet2 (EEG, EOG, EMG)
89.1%
0.847
0.823
-
-
MC2SleepNet 50% Masking (C4-A1 only)
88.6%
0.841
0.821
MC2SleepNet: Multi-modal Cross-masking with Contrastive Learning for Sleep Stage Classification
MC2SleepNet 15% Masking (C4-A1 only)
88.5%
0.840
0.823
MC2SleepNet: Multi-modal Cross-masking with Contrastive Learning for Sleep Stage Classification
SynthSleepNet (EEG1+EOG1)
88.31%
0.840
0.820
Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
CoRe-Sleep (EEG)
88.2%
0.834
0.808
-
-
SleePyCo (C4-A1 only)
87.9%
0.830
0.807
-
-
NeuroNet (C4-A1 only)
86.88%
-
0.812
NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG
0 of 10 row(s) selected.
Previous
Next
Sleep Stage Detection On Shhs | SOTA | HyperAI超神经