HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
首页
SOTA
语音识别
Speech Recognition On Timit
Speech Recognition On Timit
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
Repository
LSNN
33.2
Long short-term memory and learning-to-learn in networks of spiking neurons
LAS multitask with indicators sampling
20.4
Attention model for articulatory features detection
Soft Monotonic Attention (ours, offline)
20.1
Online and Linear-Time Attention by Enforcing Monotonic Alignments
QCNN-10L-256FM
19.64
Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition
Bi-LSTM + skip connections w/ CTC
17.7
Speech Recognition with Deep Recurrent Neural Networks
Bi-RNN + Attention
17.6
Attention-Based Models for Speech Recognition
RNN-CRF on 24(x3) MFSC
17.3
Segmental Recurrent Neural Networks for End-to-end Speech Recognition
-
Light Gated Recurrent Units
16.7
Light Gated Recurrent Units for Speech Recognition
CNN in time and frequency + dropout, 17.6% w/o dropout
16.7
-
-
GRU
16.6
The PyTorch-Kaldi Speech Recognition Toolkit
Hierarchical maxout CNN + Dropout
16.5
-
-
RNN
16.5
The PyTorch-Kaldi Speech Recognition Toolkit
Li-GRU
16.3
The PyTorch-Kaldi Speech Recognition Toolkit
LSTM
16.0
The PyTorch-Kaldi Speech Recognition Toolkit
RNN + Dropout + BatchNorm + Monophone Reg
15.9
The PyTorch-Kaldi Speech Recognition Toolkit
GRU + Dropout + BatchNorm + Monophone Reg
14.9
The PyTorch-Kaldi Speech Recognition Toolkit
Li-GRU + fMLLR features
14.9
Light Gated Recurrent Units for Speech Recognition
wav2vec
14.7
wav2vec: Unsupervised Pre-training for Speech Recognition
LSTM + Dropout + BatchNorm + Monophone Reg
14.5
The PyTorch-Kaldi Speech Recognition Toolkit
LiGRU + Dropout + BatchNorm + Monophone Reg
14.2
The PyTorch-Kaldi Speech Recognition Toolkit
0 of 22 row(s) selected.
Previous
Next
Speech Recognition On Timit | SOTA | HyperAI超神经